Перейти к контенту

Усилитель рулевого управления – Усилители рулевого управления — Википедия

Усилители рулевого управления.

Если на управляемые колёса приходится большой вес, то управление затрудняется из-за необходимости прикладывать к рулевому колесу значительные усилия. Это предопределило применение усилителей рулевого механизма.

Наличие усилителя снижает общую физическую нагрузку на водителя, в ряде случаев позволяет гасить удары от дорожных неровностей, усилитель обеспечивает возможность удержания автомобиля на дороге при повреждении шин или подвески. Но усилитель может оказать и отрицательное влияние на рулевое управление, например, из-за запаздывания включения при резких поворотах руля, потери водителем чувства дороги, снижения точности управления при слишком облегченном повороте рулевого колеса, колебаниях управляемых колёс, спровоцированных усилителями.

Усилители, применяемые на современных автомобилях по принципу своего действия могут быть адаптивными и неадаптивными, а по типу привода – гидравлическими, пневматическими и электрическими.

Адаптивные усилители могут изменять коэффициент усиления в зависимости от скорости автомобиля. У автомобиля с таким усилителем при маневрировании на стоянке усилие, необходимое для поворотов рулевого колеса, значительно ниже, чем у неадаптивных, а по мере увеличения скорости движения автомобиля усилие поворота увеличивается.

Большинство современных автомобилей с усилителем имеют гидравлический усилитель рулевого управления, в котором гидравлический насос, приводимый от двигателя, создаёт давление в гидравлическом цилиндре. Наиболее распространены гидроусилители, в которых силовой и распределительный элементы объединены с рулевым механизмом в одном корпусе.

Разновидностью гидроусилителя является электрогидравлический усилитель, в котором гидравлический насос соединён с электродвигателем, питающимся от бортовой электросети автомобиля.

В последние годы на легковых автомобилях стали применяться электрические усилители рулевого управления, в которых функции силового элемента выполняет электродвигатель , а управляющего элемента – электронный блок.

Развитие электроники позволяет говорить о возможности в будущем перейти на электроуправление поворотом колёс автомобиля (система Steer by wire). В таких системах будет отсутствовать механическая связь между рулевым колесом и управляемыми колёсами, каждое колесо будет поворачиваться индивидуальным электродвигателем по сигналу электронного блока управления. В таких системах традиционное рулевое колесо становится необязательным и может быть заменено, например, джойстиком.

1.20. Тормозное управление

Тормозным управлением называется совокупность систем автомобиля, призванных уменьшать скорость движения вплоть до полной остановки и удерживать автомобиль на уклоне неограниченное долгое время.

Тормозная сила в пятне контакта шины с дорогой тем больше, чем больше оказывается сопротивление вращению колеса. Чем лучше сцепление шины с дорогой, тем большая тормозная сила может быть получена. Сцепление зависит от вертикальной нагрузки, прижимающей колесо к дороге, рисунка протектора шины и её конструкции, состояния дорожного покрытия. Максимальное сцепление колеса с дорогой при торможении обеспечивается при его качении с одновременным частичным проскальзыванием. Когда колесо полностью блокируется, т.е. скользит по дороге без проворачивания, то сцепление уменьшается на 20 – 30% от максимального значения. Желательно при торможении колесо не доводить до полной блокировки.

Для получения максимального значения тормозной силы все колеса автомобиля делаются тормозящими, т.е. используются все вертикальные реакции от дороги, действующие на колёса автомобиля.

Каждое транспортное средство, от самых малых автомобилей весом 400 - 450кг и до больших карьерных самосвалов или автопоездов весом 500 – 600т, должно быть оборудовано рабочей, запасной и стояночной тормозными системами.

Помимо этих систем на грузовых автомобилях весом более 16т и на больших междугородных автобусах обязательно применение четвертой тормозной системы – вспомогательной (противоизносной).

Рабочая (основная) тормозная система обеспечивает уменьшение скорости движения вплоть до полной остановки автомобиля, запасная тормозная система – остановку автомобиля в случае выхода из строя рабочей тормозной системы, а стояночная тормозная – удержание остановленного автомобиля на месте, неограниченно длительное время.

Рабочая тормозная система автомобиля обычно приводится в действие ножной тормозной педалью. На прицепах и полуприцепах рабочая система приводится в действие по гидравлическому, пневматическому или электрическому сигналу, поступающему от тормозной системы автомобиля-тягача в момент начала его торможения. Существует также тормозная система прицепов, в которых рабочая система начинает срабатывать вследствие накатывания прицепа на тормозящий тягач, при котором возникает сила сжатия в сцепке. Такая тормозная система прицепа называется тормозом наката.

Рабочая тормозная система, как и стояночная и запасная, состоит из тормозных механизмов и тормозного привода. На легковых автомобилях, малотоннажных грузовых автомобилях и микроавтобусах, применяют усилитель тормозов, а также другие устройства, повышающие эффективность тормозных систем и устойчивость при торможении. Многие автотранспортные средства имеют антиблокировочную систему тормозов (АБС), входящую в состав тормозного привода.

При нажатии тормозной педали увеличивается давление жидкости в тормозном приводе, в том числе в тормозных колодках колёсных тормозных механизмов. Срабатывание тормозных механизмов приводит к замедлению вращения колёс и появлению тормозных сил в точке контакта шин с дорогой.

Запасная тормозная система должна использоваться при отказе или неисправности рабочей тормозной системы. Она может быть менее эффективной, чем рабочая тормозная система. Важное требование к запасной тормозной системе – наличие следящего действия, т.е. пропорциональности между усилием на педали и тормозным моментом на колёсах автомобиля. По этому требованию стояночная тормозная система большинства легковых автомобилей не может быть признана в качестве запасной тормозной системой.

Вспомогательная тормозная система, ограничивающая скорость движения автомобилей на длительных спусках, выполняется не зависимой от других тормозных систем. Для тяжёлых автомобилей и автопоездов была разработана такая тормозная система, которая обеспечивает длительное движение на спуске с небольшой постоянной скоростью баз использования (и разогрева) механизмов рабочей тормозной системы.

Такой системой является вспомогательная система. Вспомогательная система не может снизить скорость автомобиля до нуля. По нормативным документам эффективность вспомогательной тормозной системы считается достаточной, если на уклоне в 7% длиной 7км скорость автомобиля поддерживается на уровне (30

5)км/ч.

Конструктивно вспомогательная тормозная система выполняется сейчас тремя способами: моторный тормоз, гидравлический тормоз-замедлитель и электрический тормоз-замедлитель. В качестве тормоза-замедлителя на каждом автомобиле можно использовать двигатель, работающий на режиме холостого хода (торможение двигателем).

Более эффективный моторный тормоз (горный) представляет собой двигатель автомобиля, оборудованный дополнительными устройствами выключения подачи топлива и поворота заслонок в выпускном трубопроводе, создающих дополнительное сопротивление.

Тормозной механизм предназначен для создания тормозного момента, препятствующего вращению колёс автомобиля или элемента трансмиссии, соединённого с колесом. Наиболее распространёнными тормозными механизмами являются фрикционные, принцип действия которых основан на трении вращающихся деталей о неподвижные. По форме вращающихся деталей фрикционные тормозные механизмы делятся на

барабанные и дисковые.

Наиболее распространённое место размещение тормозного механизма – внутри колеса, поэтому такие механизмы называются колёсными. Иногда тормозные механизмы располагаются в трансмиссии автомобиля, такие механизмы называются трансмиссионными.

Наименее распространены в настоящее время на автомобилях ленточные барабанные тормозные механизмы. Отрицательным свойством ленточного механизма являются большие дополнительные радиальные нагрузки, действующие при торможении на опоры барабанов, и невозможность получения плавного торможения.

Колодочные барабанные тормозные механизмы несмотря на свою внешнюю схожесть существенно отличаются друг от друга по конструкции и свойствам ( рис. 68 ).

Барабанный тормоз с равными приводными силами и односторонним расположением опор колодок. Опорный диск закреплён на балке моста. В нижней части опорного диска установлены два пальца, на которых закреплены эксцентриковые шайбы. На эксцентриковые шайбы надеты нижние концы колодок. Верхние концы колодок соприкасаются с поршнями рабочего цилиндра. Длина фрикционных накладок, прикреплённых к передним и задним колодкам неодинакова. Накладка передней колодки длиннее задней. Сделано это для обеспечения равномерного износа накладок, т.к. передняя колодка работает большее время как первичная и создаёт больший тормозной момент чем задняя. При торможении давление жидкости в колёсном цилиндре раздвигает поршни в противоположном направлении, они воздействуют на верхние концы колодок, которые преодолевают усилие пружины и прижимаются к барабану. При растормаживании давление в цилиндре уменьшается и благодаря возвратной пружине, колодки сводятся в первоначальное положение.

Тормоз с равным перемещением колодок. В расторможенном состоянии между колодками и барабаном имеется зазор. При торможении давление воздуха воспринимается мембраной тормозной камеры, установленной на кронштейне, и её шток поворачивает за рычаг вал с разжимным кулаком. Колодки прижимаются к барабану, вызывая торможение колеса.

Рис. 68. Барабанный механизм с равными приводными силами и односторонним расположением опор колодок:

1 – тормозной барабан; 2 – фрикционная накладка; 3 – колодка; 4 – тормозной щит; 5 – тормозной цилиндр; 6 – возвратные пружины; 7 – эксцентрик регулировки тормоза

На ряде автомобилей применены тормозные механизмы с клиновым разжимным устройством и автоматической регулировкой зазора.

Дисковый тормозной механизм состоит из вращающегося диска, двух неподвижных колодок, установленных с обеих сторон диска внутри суппорта, закреплённого на кронштейне цапфы. По сравнению с колодочными тормозами барабанного типа дисковые тормозные механизмы обладают лучшими эксплуатационными свойствами, а поскольку передние колёса требуют при торможении приложения более значительных тормозных усилий, то установка передних колёс этими дисковыми тормозами улучшает Эксплуатационные качества автомобиля. При торможении неподвижные колодки прижимаются к вращающемуся диску, появляются сила трения и тормозной момент. Дисковый тормозной механизм обладает высокой стабильностью своих характеристик.

На гоночных автомобилях применяют керамические диски, стойкие к перегреву, обеспечивающие хорошую эффективность торможения и высокую долговечность. В последнее время керамические тормозные диски начали применять и на некоторых автомобилях серийного производства.

Тормозной привод необходим для управления тормозными механизмами, т.е. для их включения, выключения и изменения режима работы. В настоящее время в тормозных системах применяются механический, гидравлический, пневматический, электрический, электропневматический, электрогидравлический, пневмомеханический и гидр пневмогидравлический приводы. Все эти приводы имеют свои преимущества и недостатки и поэтому применяются в различных тормозных системах на разных типах автотранспортных средств.

Механический тормозной привод представляет собой систему тяг, рычагов, тросов, шарниров и т.п., соединяющих тормозную педаль с тормозными механизмами. Главное преимущество механического привода – простота и надёжность конструкции. В простейшем виде он состоит из тормозной педали, соединённой тягами и тросами с разжимным устройством механического типа колёсных или трансмиссионных тормозов.

Гидравлический привод автомобилей является гидростатическим, т.е. таким, в котором передача энергии осуществляется давлением жидкости. Принцип действия гидростатического основан на свойстве несжимаемой жидкости, находящейся в покое, передавать создаваемое в любой точке давление во все другие точки при замкнутом объёме.

Преимуществом гидравлического привода является быстрота срабатывания, высокий КПД, простота конструкции, небольшие масса и размера, удобство компоновки аппаратов привода и трубопровода; возможность получения желаемого распределения тормозных усилий между осями автомобиля за счёт различных диаметров поршней колёсных цилиндров.

Недостатками гидропривода являются: потребность в специальной тормозной жидкости с высокой температурой кипения и низкой температурой загустевания; возможность выхода из строя при разгерметизации вследствие утечки жидкости при повреждении, или выхода из строя при попадании в привод воздуха; значительное снижение КПД при низких температурах; трудность использования в автопоездах для непосредственного управления тормозами прицепа.

Пневматический тормозной привод для затормаживания автомобиля или прицепа использует сжатый воздух.

Преимущества и недостатки пневматического привода во многом противоположны гидравлическому приводу. К преимуществам относят неограниченные запасы и дешевизну воздуха, сохранение работоспособности при небольшой разгерметизации, т.к возможная утечка компенсируется подачей воздуха от компрессора, возможность использования в автопоездах для непосредственного управления тормозами прицепа, использование в других устройствах, таких как привод переключения многоступенчатых коробок передач, усилитель сцепления, привод дверей и т.д.

Недостатками пневмопривода являются: большое время срабатывания вследствие медленного поступления сжатого возжуха к удалённым воздухонаполняемым объёмам через трубопроводы малого диаметра, сложность конструкции, большие массы и размеры агрегатов из-за относительно небольшого рабочего давления, возможность выхода из строя при замерзании конденсата в трубопроводах и аппаратах при отрицательных температурах.

Смешанные тормозные приводы позволяют получать высокое быстродействие, присущее гидравлическому приводу, и большие усилия, характерные для пневматического привода. Помимо этого гидравлическая часть смешанного привода обеспечивает одновременное начало торможения всех колёс автомобиля и обладает другими достоинствами, свойственными гидравлическим тормозным приводам , а пневматическая часть – лёгкость управления и позволяет создавать и управлять тормозными усилиями на буксируемом прицепе.

Смешанный электропневматический тормозной привод представляет собой комбинацию электрического и пневматического приводов.

Преимуществом ЭПП являются: уменьшение времени срабатывания особенно удалённых осей прицепа или полуприцепа; уменьшение тормозного пути; оптимальное распределение тормозных сил между передними и задними колёсами автомобиля; увеличение устойчивости автопоезда; упрощение привода, по сравнению с пневматическим, за счёт объединения функций нескольких аппаратов в одном.

studfiles.net

Усилитель рулевого управления: история регулятора ваших мышечных усилий


Не зря первой компанией, заинтересовавшейся в устройстве, стал именно Cadillac – ведь шестнадцатицилиндровые монстры не только ездили быстро, они еще и были очень тяжелыми. В 1934 году Дэвис стал работать на General Motors. Однако ввиду большой стоимости тонкой гидравлики и экономического кризиса, вызвавшего падение продаж автомобилей, гидроусилитель не стал частью стандартной комплектации автомобилей GM, а конструктор уже в 1936 ушел в компанию Bendix и там продолжал совершенствовать свою систему.

К 1939 году были разработаны системы гидроусиления дести типов, и две из них проданы корпорации GM для экспериментальной установки на автомобилях Buick. В 1940 году они были вновь востребованы на бронеавтомобилях Chevrolet, и в результате к концу войны более 10 тысяч машин были оснащены ими, а конструкция была действительно отлажена для массового производства.

После войны корпорация Chrysler начала разработку своего собственного усилителя на базе уже просроченного патента Дэвиса. Разработка была показана на модели Crysler Imperial, и получила название Hydraguide в 1951 году. Сразу после этого компания GM заключила сделку с Дэвисом об использовании его разработок на машинах ее марок, и к 1953 году по дорогам уже бегал первый миллион машин с гидроусилителями руля. Пожалуй, это тот случай, когда конкуренция безусловно полезна – к 1956 году каждый четвертый продававшийся в США автомобиль имел гидроусилитель, что неудивительно, учитывая рост массы и мощности.

А вот в Европе дела продвигались не так хорошо. Например, компания Цанрадфабрик, более известная как ZF, выпускала простые рулевые редукторы без гидроусилителей для машин с нагрузкой на ось до 6,5 тонн, а значит, даже водители тяжелых грузовиков тогда обходились без «помощников». Ситуация начала меняться только в середине шестидесятых, когда увеличение требований к труду водителей грузовиков привело к появлению спроса на системы гидроусиления. А вот на легковых машинах водители справлялись в основном своими силами вплоть до восьмидесятых годов, когда рост снаряженной массы машин, их скоростей, требований к безопасности и переход на передний привод, а значит и рост массы, приходящейся на переднюю ось, привели к необходимости внедрения усилителей рулевого управления даже на малолитражках.

Особенности конструкции

Конструкция гидроусилителя, предложенная Дэвисом, оказалась настолько удачной, что, по большому счету, мало изменилась до нашего времени.

Суть идеи Фрэнсиса Дэвиса состояла в том, что поток масла от насоса идет постоянно, а не только тогда, когда требуется создать давление. При повороте руля начинает скручиваться торсионный стержень, связывающий вал рулевой колонки и редуктор рулевого управления. При этом в золотниковом распределительном механизме открываются отверстия, направляющие жидкость от насоса в правый или левый рабочий цилиндр гидроусилителя. Чем больше закручивание торсиона, тем больше отверстий золотника открывается, и тем больше насос помогает вращать руль. Основные усилия в совершенствовании этой простой схемы были направлены на уменьшение потерь в системе привода, составляющих не менее 90 ватт даже на самых современных системах, обеспечение более комфортного регулирования усилия на руле, увеличение степени помощи при маневрировании на малой скорости и «утяжеление» руля на трассе.

Дальнейшие усовершенствования

Уменьшение затрат на привод шло по пути совершенствования гидравлики, насоса и его привода. Типичные затраты на привод – это потери на работу передачи, например, ремня (около 10 ватт), потери в насосе (для самых совершенных систем это 40 ватт в простое) и потери в распределительном механизме (это еще 20 ватт). Более ранние системы потребляли заметно большую мощность – так, отчет об испытаниях большого мотора V8 компании GM говорит о почти 500 ваттах потерь мощности при установке на мотор насоса гидроусилителя. Можете себе представить, каков был размер проблемы при использовании не вполне исправных или менее совершенных компонентов.

Для снижения затрат на привод насоса ГУР, когда усиление не требуется, и, собственно, регулирования степени усиления рулевого привода в первую очередь начали совершенствовать насос. Первые системы насосов переменной производительности пришли из систем гидропривода и оказались излишне сложными для массового применения на легковых машинах, но иногда встречаются на грузовиках. Конструкции могут быть различными – лопастными, радиально- или аксиально-поршневыми, но их все объединяет сложность и редкость, поэтому они не устанавливались на легковые машины ввиду большой массы, размеров и цены. Компактным вариантом такой конструкции является, например, насос ГУР Subaru, где шиберный насос имеет внешнее кольцо, которое может менять свое положение относительно центра ротора.


www.kolesa.ru

история регулятора ваших мышечных усилий — DRIVE2

Усилитель рулевого управления был даже на самых простых телегах, ведь лошадь тянула поворотную ось за собой. С появлением «самодвижущихся» экипажей проблема усилия на рулевом управлении стала крайне актуальной, и началось соревнование конструкторской мысли длиной в добрую сотню лет.

Необходимость
Первые паровые омнибусы в полной мере познали все прелести непосредственного управления рулевыми колесами. Классические методы в виде «румпеля» большой длины и различных цепных и тросовых редукторов пришли из судостроения, но их применение на машинах сравнительно малого размера не всегда было возможно, и конструкторам приходилось искать обходные пути. Часто встречались машины, на которых рулевое колесо поворачивали сразу несколько человек. Но еще в 1823 году Роберт Гюрней использовал оригинальную конструкцию, которую можно считать первым усилителем рулевого управления.

В ней человек поворачивал управляющие колеса небольшой тележки, которая дышлом соединялась уже с основной поворотной осью, и если омнибус двигался и сцепления оси хватало, то маленькая тележка поворачивала основную ось за собой. Таким образом, с управлением мог справиться один человек. Наверное, это первый засвидетельствованный случай применения такого рода механизма на транспорте. Как ни странно, схемы с пневматическим (паровым) усилением получили очень малое распространение – судя по всему, ввиду общего консерватизма конструкций.


Работа распределителя гидравлической рулевой рейки

Усиление на скорости побольше
Более легкие машины с ДВС поначалу обходились более простыми румпелями, ведь их масса была во много раз меньше, чем у сухопутных паровозов, а значит, и усилия на управляемых колесах было намного меньше. Позиции рулевого управления без усиления заметно улучшились после появления круглого рулевого колеса на модели Panhard 4hp в 1894 году – оно позволяло обойтись достаточно простым механическим редуктором, и при этом иметь вполне комфортное усилие на руле. А то, что крутить его нужно было быстро и много – проблема не великая: машины тогда почти не водили любители, это было ремеслом суровых профессионалов, которые ездили почти без света и без отопления. Патент на новую форму рулевого колеса оформил на себя Альфред Вашерон, и с 1898 года все машины марки Panhard имели круглый руль, а вскоре за ними последовали и остальные автопроизводители.
Но над проблемой усиления рулевого управления по-прежнему работали: например, в 1876 году Г.В. Фиттс запатентовал свою систему усиления рулевого управления, основанную на сложном механизме дифференциального механического усилителя с приводом через сцепление от мотора (US Patent: 175,601), но такая система так и не была реализована.

За ней последовали разработки Роберта Тьюфорда из Питтсбурга, который запатентовал свою систему в 1900 году (U.S. Patent: 646,477), и Фредерика Ланчестера, запатентовавшего гидравлический и вакуумный усилители рулевого управления в Англии в 1902-м.

Первые реальные попытки
Но эти разработки не были использованы в конструкции усилителя грузовика Columbia 1903 года выпуска – он был оснащен… электроусилителем рулевого управления! Так что если вы думаете, что электроусилитель появился недавно, то ошибаетесь – исторически он оказался первым реально работающим типом усилителя.

В период 1904-1927 гг. некоторые грузовые машины оснащались вакуумными и пневматическими усилителями рулевого управления. Точность такой конструкции оставалась низкой, но на грузовиках и тракторах она иногда применялась, поскольку скорости у них были невелики, а масса машин, тем не менее, заметно возросла. Связано это, в первую очередь, с простотой управления вакуумной системой. Более ранние патенты уже описывали устройство клапана-распределите

www.drive2.ru

Электроусилители рулевого управления | Усилители

Главным преимуществом электрического привода рулевого управления относительно гидроусилителя является отсутствие гидравлики, а значит насоса гидроцилиндра, шлангов. Это позволяет уменьшить массу усилителя рулевого управления и объем занимаемый управлением в подкапотном пространстве.

Известно, что ряд факторов приводит к уводу автомобиля от прямолинейного движения, например разное давление воздуха в шинах, разная степень износа протектора, боковой ветер, поперечный уклон дороги. Применение электромеханического усилителя позволяет активно поддерживать возврат управляемых колес в среднее положение. Эта функция называется «активной самоустановкой» колес. Благодаря ее действию водитель лучше чувствует среднее положение рулевого управления, она облегчает также вождение автомобиля по прямой при воздействии на него различных внешних сил.

Если при движении по прямой на автомобиль действует боковой ветер или поперечное усилие, вызываемое уклоном дорожного полотна, усилитель создает постоянный поддерживающий момент, который освобождает водителя от необходимости создавать реактивные усилия на рулевом колесе.

Общее расположение агрегатов рулевого управления с электроусилителем на примере автомобиля Opel Corsa показано на рисунке:

Рис. Общее расположение агрегатов рулевого управления с электроусилителем:
1 – электроусилитель; 2 – карданный вал рулевого управления; 3 – рейка привода рулевого управления

Электроусилитель может приводить вал рулевого управления на рулевой колонке, шестерню привода рейки или непосредственно саму рейку.

Рис. Электроусилитель рулевого управления на примере автомобиля Opel Corsa:
1 – электродвигатель; 2 – червяк; 3 – червячное колесо; 4 – скользящая муфта; 5 – потенциометр; 6 – кожух; 7 – рулевой вал; 8 – разъем датчика момента на рулевом валу ; 9 — разъем питания электродвигателя

Разрез электроусилителя рулевого управления с приводом рулевого управления на рулевой колонке показан на рисунке:

Рис. Разрез электроусилителя рулевого управления:
1 – трехфазный синхронный электродвигатель; 2 – якорь; 3 – обмотка статора; 4 – датчик положения якоря; 5 – червячное колесо; 6 – рулевой вал; 7 – червяк

Электроусилитель через червячную передачу связан с валом рулевого управления. В зависимости от полярности напряжения питания электродвигатель вращается в ту или иную сторону, помогая водителю поворачивать колеса. Крутящий момент величиной силы тока, определяемой блоком управления действующим согласно заложенной в него программе и сигналам, поступающим от соответствующих датчиков.

Вал электродвигателя, при подаче на двигатель напряжения помогает поворачивать вал привода рулевого колеса через червяк и червячное колесо. Для поддержания постоянной обратной связи с дорогой входной и выходной валы электроусилителя соединены друг с другом через торсион. Приложение усилия к рулевому управлению как со стороны водителя, так и со стороны дороги приводит к закручиванию торсиона до 3-х градусов и изменению взаимной ориентации входного и выходного валов. Это служит сигналом для включения в работу электроусилителя. В зависимости от угла поворота рулевого колеса и скорости автомобиля электродвигатель подкручивает выходной вал, снижая усилие. Работает электродвигатель и при обратном ходе, он помогает возвращать колеса автомобиля и рулевое колесо в первоначальное положение. Торсион при поворотах всегда остается немного скрученным, гарантируя тем самым на руле то усилие, которое необходимо водителю, чтобы чувствовать дорогу.

Один из датчиков находится на торсионе, соединяющем половинки разрезанного рулевого вала, и следит за его закручивани­ем. С ростом усилия на руле сильнее за­кручивается торсион – больший ток идет на электромотор усилителя, что соответст­венно увеличивает помощь водителю.

Второй датчик следит за скоростью автомобиля. Чем она меньше, тем эффективнее помощь в повороте рулевого управления и наоборот, а после 75 км/ч усилитель вообще выключается чтобы не создавать дополнительного сопро­тивления, редуктор и электро­мотор разъединяются.

Третий датчик контролирует частоту вращения коленчатого вала двигателя и следит, чтобы усилитель работал только одновременно с ним. Это делается в целях экономии электроэнергии, потому что электроусилитель может потреблять до 105 А.

Производитель автомобилей Ауди предлагают систему реечного электроусилителя с двумя шестернями.

Рис. Схема реечного электроусилителя с двумя шестернями:
1 – датчик момента на рулевом колесе; 2 – электронный блок управления; 3 – электродвигатель усилителя; 4 – шестерня усилителя; 5 ­– рейка; 6 – датчик угла поворота рулевого колеса; 7 – торсион вала рулевого управления; 8 – шестерня рулевого механизма

Усилитель действует на рейку рулевого механизма через шестерню 3, которая установлена параллельно с основной шестерней рулевого механизма 2. Шестерня усилителя 3 приводится от электродвигателя 4. Передаваемый на шестерню 2 рулевого механизма крутящий момент измеряется датчиком момента 1. Величина развиваемого усилителем крутящего момента устанавливается электронным блоком управления 5 в зависимости от момента на рулевом колесе, скорости автомобиля, угла поворота колес, скорости поворота рулевого вала и других вводимых в него данных.

Электродвигатель и редуктор размещены в общем алюминиевом корпусе 2. На конце вала двигателя нарезан червяк 3.

Рис. Червячная передача привода шестерни усилителя:
1 – электродвигатель; 2 – корпус; 3 – червяк; 4 – вал привода; 5 – демпфер

Червячная передача служит для привода шестерни усилителя. Между червячным колесом и шестерней установлен демпфер 5, который исключает резкое нарастание усилия на рейке при включении усилителя. Положение (угол поворота) ротора электродвигателя определяется с помощью датчика поворота 6. Этот датчик расположен под возвратным и скользящим кольцами подушки безопасности. Он установлен на рулевой колонке между подрулевыми переключателями и рулевым колесом. Датчик генерирует сигнал, соответствующий углу поворота рулевого колеса.

Основными деталями датчика угла поворота рулевого колеса являются кодирующий диск с двумя кольцами и фотоэлектрические пары, каждая из которых содержит источник света и фотоэлемент. На кодирующем диске предусмотрены два кольца: внешнее кольцо 1 с шестью фотоэлектрическими парами, которое служит для определения абсолютных значений угла поворота рулевого колеса, и внутреннее кольцо 2 – для определения приращений этого угла. Кольцо приращений разделено на 5 сегментов по 72°. Оно используется в сочетании с одной фотоэлектрической парой. В пределах каждого из сегментов кольцо имеет несколько вырезов. Чередование вырезов в пределах одного сегмента не изменяется, а в отдельных сегментах оно отличается. Благодаря этому осуществляется кодирование сегментов.

Рис. Схема датчика угла поворота рулевого колеса:
1 – внешнее кольцо абсолютных значений; 2 – внутреннее кольцо приращений; 3 – фотоэлектрическая пара.

Датчик угла поворота рулевого колеса позволяет отсчитывать его в пределах до 1044°. Отсчет угла производится путем суммирования числа градусов. При переходе через метку, соответствующую 360°, датчик регистрирует завершение поворота на один полный оборот. Конструкцией рулевого механизма предусмотрена возможность поворота рулевого колеса на 2,76 оборота.

На рулевом колесе установлен датчик момента 3.

Рис. Датчик момента на рулевом колесе:
1 – рулевой вал; 2 – магнитное кольцо; 3 – чувствительный элемент датчика; 4 – вал шестерня; 5 – витой кабель; 6 – торсион

Действие этого датчика основано на магниторезистивном эффекте. На рулевом вале 1 установлено магнитное кольцо 2, которое жестко связано с верхней частью торсиона 6. Чувствительный элемент 3 датчика соединен с валом шестерни рулевого механизма 4 и связан таким образом с нижней частью торсиона. Сигнал снимается с датчика через витой кабель 5. Торсион закручивается точно в соответствии с усилиями, прилагаемыми к рулевому валу. При этом магнитное кольцо 2 перемещается относительно чувствительного элемента 3 датчика. В результате действия магниторезистивного эффекта изменяется сопротивление чувствительного элемента, величина которого определяется блоком управления.

Если системой управления обнаружен дефект датчика, она производит «мягкое» отключение усилителя. При этом усилитель не отключается полностью, а переводится на режим управления по резервному сигналу, который образуется в блоке управления из сигналов угла поворота рулевого вала и частоты вращения ротора двигателя усилителя.

ustroistvo-avtomobilya.ru

Гидравлический усилитель рулевого управления с электронным управлением

Чем выше скорость автомобиля, тем меньшие усилия должен прилагать водитель к рулевому колесу, чтобы изменить направление движения, что может привести к потере управляемости. Такая принципиальная закономерность характерна для всех систем рулевого управления (с постоянным и переменным передаточным отношением). Поэтому при разработке рулевого управления принимаются компромиссные решения.

Для улучшения управляемости автомобиля следует повышать крутящий момент при высоких скоростях и сводить его до минимума при малых скоростях движения и при парковке. Для выполнения этих требований современные легковые автомобили оснащаются гидроусилителями с электронным управлением и регулированием типа Servotronic. Эта система регулирует усилия на рулевом колесе в зависимости от скорости автомобиля.

Рис. Зависимость момента на рулевом колесе от скорости движения автомобиля при применении гидроусилителя типа Servotronic. Нулевая скорость соответствует парковке.

Усилитель руля Servotronic создан на базе обычного гидроусилителя. Измененная конструкция клапана управления с поворотным золотником позволяет реализовать принцип непосредственной гидравлической обратной связи. Применением электрогидравлического преобразователя и соответствующим приспособлением клапана управления удалось обеспечить зависимость степени усиления от скорости автомобиля.

Необходимое для работы системы Servotronic давление рабочей жидкости порядка 130 кгс/см2 создается гидронасосом обычной конструкции. Под этим давлением рабочая жидкость поступает к поворотному золотнику 7 клапана управления.

В свободном состоянии торсион удерживает клапан управления в среднем (нейтральном) положении.

Рис. Схема рулевого управления оборудованного гидроусилителем с электронным управлением:
1,7 – поворотный золотник; 2,5 – торсион; 3 – электронный блок управления; 4 – датчик сигнала скорости; 6 – штифт; 8 – насос гидравлический; 9 – резервуар; 10 — предохранительный и перепускной клапан; 11 – реактивный поршень; 12 – электромагнитный клапан; 13,18 – распределительная втулка; 14 – правая полость силового цилиндра;15 — левая полость силового цилиндра; 16 – подвод жидкости к правой полости; 17 – подвод жидкости к левой полости; 19- поршень; а – нейтральное положение; б – поворот вправо; в – поворот влево

В блоке клапана управления находится торсион 5. Верхняя часть торсиона соединена штифтом с золотником 7. Нижняя его часть соединена также штифтом с ведущей шестерней 19 и с втулкой распределителя 13. Торсион связан с рулевым валом через карданный шарнир. Соединения торсиона выполнены посредством штифтов 6.

Рис. Соединения торсиона:
5 – торсион; 6 – штифт; 7 – поворотный золотник; 13 – распределительная втулка; 19 – ведущая шестерня

Подаваемая гидронасосом рабочая жидкость поступает через входное сверление в корпус клапана управления и далее через кольцевой паз и радиальные отверстия в распределительной втулке клапана к регулирующим кромкам золотника. При нейтральном положении клапана рабочая жидкость перетекает через приточные кромки золотника 1 и поступает во все продольные пазы распределительной втулки и далее мимо сливных кромок золотника в его сливные пазы. Через эти пазы рабочая жидкость отводится в сливную полость и далее в бачок. При этом правая и левая полости силового цилиндра оказываются соединенными между собой через подключенные к ним трубопроводы и кольцевые пазы в корпусе клапана.

При повороте рулевого колеса налево создаваемый водителем крутящий момент передается на торсион 2, верхний конец которого соединен штифтом 6 с поворотным золотником, а нижний конец – с распределительной втулкой 18 и приводной шестерней рулевого механизма. В результате торсион скручивается подобно стабилизатору при наезде одного из колес автомобиля на неровность дороги.

При закрутке торсиона золотник вместе с верхней частью торсиона поворачивается в распределительной втулке, изменяя относительное положение пазов золотника и перепускных отверстий втулки. По мере поворота золотника относительно втулки одни каналы открываются, а другие закрываются.

Рабочая жидкость поступает через щели, раскрывающиеся при перемещении приточных кромок, в продольные пазы и далее через отверстие в кольцевой паз и через трубопровод в правую полость 14 силового цилиндра. На поршень 19 воздействует давление жидкости, что облегчает поворот рулевого колеса.

При поступлении рабочей жидкости в правую полость силового цилиндра происходит ее вытеснение из левой полости в сливную магистраль. Если отпустить рулевое колесо, распрямляющийся торсион вернет золотник в нейтральное положение относительно распределительной втулки.

При повороте рулевого колеса направо рабочая жидкость поступает в левую полость 15 силового цилиндра и происходит ее вытеснение из правой полости.

Электронный блок управления системы Servotronic обрабатывает сигнал скорости автомобиля и изменяет в соответствии с ним ток управления электромагнитным клапаном 4. При повышении скорости автомобиля блок управления системы уменьшает ток управления электромагнитным клапаном. В результате этот клапан частично открывается и перепускает ограниченное количество рабочей жидкости из приточного кольцевого паза 5 в полость 9 над реактивным поршнем 8. При этом жиклер 6 препятствует сильному оттоку рабочей жидкости на слив, благодаря чему в полости над реактивным поршнем создается достаточно высокое давление. В зависимости от величины этого давления изменяется усилие, передаваемое поршнем на шарики и далее на втулку распределителя. Чем выше давление рабочей жидкости, тем большие усилия создаются усилителем и тем большие усилия должен прилагать водитель к рулевому колесу.

Действующее на реактивный поршень давление передается на шарики 7, которые установлены между ним и скошенными поверхностями центрирующей втулки 10, жестко соединенной с распределительной втулкой. Точное центрирование клапана управления особенно благоприятно при движении автомобиля по прямой. При вращении клапана управления, находящиеся под нагрузкой шарики противодействуют повороту золотника относительно распределительной втулки. Таким образом, гидравлический способ создания реактивных усилий используется для повышения момента на рулевом колеса до уровня, подбираемого индивидуально для каждой модели автомобиля.

При высоких скоростях движения ток управления снижается до нуля, в результате чего электромагнитный клапан открывается полностью. В результате на реактивный поршень действует максимальное давление, соответствующее его величине в приточном кольцевом пазе. В результате этого при повороте рулевого колеса на реактивный поршень действует повышенное давление рабочей жидкости. Если действующее на реактивный поршень давление достигло установленного для данного автомобиля предела, открывается ограничительный клапан 3, через который рабочая жидкость перетекает в сливную полость. При этом дальнейший рост давления прекращается.

Рис. Блок клапана управления:
1 – распределительная втулка; 2 – сливная полость; 3 – ограничительный клапан; 4 – электромагнитный клапан; 5 – приточный кольцевой паз; 6 – жиклер; 7 – шарик; 8 – реактивный поршень; 9 – полость над реактивным поршнем;10 – центрирующая втулка

При небольшой или нулевой скорости движения сила протекающего через электромагнитный клапан тока достигает максимальной величины, в результате чего электромагнитный клапан 4 закрывается и предотвращает поступление рабочей жидкости в полость 9 над реактивным поршнем. При этом в полости над реактивным поршнем поддерживается такое же давление, как и в сливной полости 2, так как они соединены между собой посредством жиклера 6. Таким образом клапан управления системы Servotronic действует так же, как обычный клапан с поворотным золотником. Так как действие реактивного поршня отсутствует, для поворота колес автомобиля требуются относительно небольшие усилия на рулевом колесе.

При воздействии на рулевой механизм силы в противоположном направлении, например, в результате наезда на неровность, усилитель действует как демпфер. В этом случае торсион закручивается под действием усилия, передаваемого на него через рейку и ведущую шестерню. При этом золотник поворачивается из нейтрального положения относительно втулки распределителя. В результате рабочая жидкость поступает под давлением в ту полость силового цилиндра, которая создает противодействие движению рейки.

Рис. Схема работы гидроусилителя при наезде на препятствие

Например, при переезде неровности на колесо автомобиля действует сила FA, которая стремится его повернуть вокруг точки D (по часовой стрелке). При этом на рейку передается сила FZ, которая поворачивает шестерню и закручивает торсион. В результате открывается проход рабочей жидкости под давлением в правую полость силового цилиндра, а левая полость сообщается со сливом. Действующая на поршень и рейку реактивная сила FR уравновешивает силу FZ и противодействует таким образом повороту колес автомобиля.

На привод насоса гидроусилителя затрачивается значительная мощность (5…7 л.с.), поэтому в целях экономии топлива в современных автомобилях применяют гидравлические насосы с приводом не от коленчатого вала, а от электродвигателя, который включается в работу по сигналу блока управления. Такая конструкция позволяет также повысить долговечность насоса гидроусилителя, так как он работает только во время поворота рулевого колеса.

ustroistvo-avtomobilya.ru

Принцип действия усилителя рулевого управления с электроусилителем

Водитель поворачивает рулевое колесо, прикладывая к нему определенный крутящий момент. Под действием этого момента закручивается торсион. Датчик момента 1 на рулевом колесе измеряет величину его закрутки и направляет соответствующий сигнал на вход блока управления 5. При этом с датчика поворота колеса 6 поступают сигналы, соответствующие моментальному углу поворота рулевого колеса и скорости его поворота.

Рис. Схема реечного электроусилителя с двумя шестернями:
1 – датчик момента на рулевом колесе; 2 – ведущая шестерня 1; 3 – ведущая шестерня 2; 4 – электродвигатель усилителя; 5 – электронный блок усилителя; 6 – датчик угла поворота рулевого колеса; 7 – торсион вала рулевого управления

Блок управления рассчитывает крутящий момент, который должен развивать двигатель усилителя в зависимости от момента на рулевом колесе, скорости автомобиля, частоты вращения вала двигателя, угла и скорости поворота рулевого вала, а также с учетом записанных в его памяти характеристик. Рассчитанная таким образом величина служит для управления электродвигателем усилителя. На основании заданных характеристик блок управления подаёт управляющий сигнал на электродвигатель, который передаёт необходимый дополнительный момент через рулевой механизм на рулевые тяги. Перемещение рейки рулевого механизма происходит под действием суммарного усилия, создаваемого как в результате преобразования крутящего момента на рулевом колесе, так и момента двигателя усилителя.

Если водитель перестал вращать рулевое колесо или отпустил его, торсион полностью раскручивается. При этом момент на шестерне рулевого механизма снижается до нуля. Ввиду определенной геометрии подвески при повороте колес возникают реактивные усилия, которые стремятся вернуть их в исходное положение. Обычно эти силы настолько малы, что не могут преодолеть силы трения в механизмах рулевого управления и вернуть колеса в среднее положение. Такая ситуация распознается блоком управления по сигналу датчика поворота 6 рулевого вала.

Блок управления рассчитывает крутящий момент, который должен развивать электродвигатель усилителя для поворота колес автомобиля в среднее положение. Величина этого момента зависит от момента на рулевом колесе, скорости автомобиля, частоты вращения вала двигателя, угла и скорости поворота рулевого вала; она определяется с учетом записанных в памяти блока управления характеристик.

В результате включается электродвигатель усилителя, который поворачивает колеса автомобиля в среднее положение.

При отключенной или неисправной аккумуляторной батарее и работающем двигателе блок управления бортовой сетью обеспечивает питание электромеханического усилителя от генератора. При необходимости производится отключение определенных потребителей электроэнергии, имеющих более низкий приоритет подключения к сети. При отключении усилителя по причине системной неисправности рулевое управление полностью сохраняет свою работоспособность, а автомобиль – управляемость.

Производители автомобилей БМВ в конструкции своих автомобилей начали применять активное рулевое управление. Суть такого управления заключается в том, что рулевой вал не сплошной, а разделенный, и соединяется с помощью сдвоенного планетарного редуктора. Корпус редуктора может поворачиваться с помощью специального электродвигателя по команде электронного блока управления. В зависимости от скорости движения автомобиля электронный блок управления меняет передаточное отношение рулевого механизма – увеличивая усилия при движении на шоссе и уменьшая при парковке. В последнем случае, изменяя передаточные отношения редуктора, уменьшается необходимость поворота рулевого колеса на большие углы.

Современные системы электроусилителей ограничены по эффективной мощности при применяемом бортовом напряжении 12 В, поэтому на современном этапе такие системы находят применение только на легковых автомобилях.

ustroistvo-avtomobilya.ru

🚘 Электрический усилитель рулевого управления – виды и неисправности

Виды усилителей рулевого управления

В любом современном автомобиле присутствует такой узел, как усилитель рулевого управления. Основной его задачей является снижение силы, применяемой водителем для вращения руля. Это очень повышает показатель комфортности автомобиля. Ещё 15-20 лет назад усилитель руля был настоящей изюминкой при покупке автомобиля в России и СНГ. Сегодня же любой автомобиль даже в базовой комплектации имеет данный элемент. Существует несколько видов усилителей рулевого управления:

  • гидравлический усилитель руля
  • электрический усилитель руля
  • электрогидравлический усилитель руля
  • механический усилитель руля
  • пневматический усилитель руля

Устройство и работа каждого из видов в корне различается. Пневматический усилитель далеко в прошлом и сейчас он уже практически не используется. Остальные варианты, особенно электроусилитель и гидроусилитель, вы можете встретить на многих автомобилях.

Гидроусилитель руля

Пожалуй, наиболее распространённым типом механизма усиления является гидроусилитель (ГУР). На двигателе автомобиля установлен дополнительный агрегат – насос гидроусилителя. Этот насос создаёт давление специального масла, посредством которого перемещаются элементы в рейке. В момент, когда руль находится в неподвижном положении, масло свободно перекачивается в обход рулевой рейки. Как только вы немного поворачиваете руль, масло под давлением поступает в соответствующую часть мехнизма. Колёса поворачиваются, механизм распределения возвращается в первичное положение, и масло снова начинает уходить в обход рейки.

Основной неисправностью ГУР-а является течь масла через сальники и стыки шлангов, а также неисправность самого насоса. Обычно насос выходит из строя после работы «на сухую». Таким образом, из одной неисправности вытекает другая. Чтобы этого избежать – периодически проверяйте уровень масла.

Электроусилитель руля

Всё большую популярность в последнее время набирает электроусилитель руля (ЭУР). Основным его преимуществом является высокая надёжность и низкая шумность во время эксплуатации. Устройство такого механизма довольно простое: весь агрегат, как правило, располагается под рулевой колонкой. Как только вы прикладываете усилие к рулевой колонке, автоматика это фиксирует и включается электромотор, который «помогает» поворачивать колёса.

Также существует такая разновидность, как электромеханический усилитель руля. Такой вид электроусилителя отличается тем, что передаёт усилие посредством зубчатой или ремённой передачи.

Основной неисправностью такого типа усилителя является повреждение электрооборудования: предохранители, реле, электромотор, соединения проводов. Ремонт таких агрегатов обходится на порядок дешевле ремонта других разновидностей механизмов усиления руля.

Спасибо за подписку!

Электрогидроусилитель руля

Усилители рулевого механизма такого типа также называются гибридными. Принцип работы такого механизма основан и на гидравлике, и на электрике. Основной силовой установкой, как и в случае с гидроусилителем, является насос. Но, в отличие от ГУР-а, насос приводится в движение не ремённым приводом, а электрическим током. Далее всё происходит по такому же сценарию, как и в случае с гидроусилителем – жидкость приводит в движение рейку и колёса поворачиваются, при этом водитель не применяет больших усилий со своей стороны.

Надёжность такого насоса на порядок выше и, помимо этого, исключается вероятность обрыва ремня гидроусилителя. Но, тем не менее, нет ничего вечного, и неисправность усилителя рулевого управления имеет место быть. Чаще всего в такой системе сгорает электромотор или нарушается герметичность масляных каналов. Не спешите менять рейку целиком, если вы увидели подтёки – возможно, достаточно заменить сальники.

Усилитель рулевого управления автомобилей Лада Веста

На автомобили всех без исключения комплектаций линейки Лада Веста устанавливается электроусилитель рулевого управления. Если быть точнее, то электромеханический, поскольку внутри узла используются передаточные механизмы. Сам электроусилитель – разработка Nissan, поэтому в качестве детали можно не сомневаться. Но, как и любой механизм, ЭУР имеет свойство ломаться. И если узел отказался работать, то вероятнее всего причиной поломки является электрика (сгоревший электромотор, оборванная проводка, вышедшее из строя реле или сгоревший предохранитель). Механические же повреждения практически исключены и если и возможны, то только после серьёзных дорожно-транспортных происшествий, в результате которых повреждён рулевой механизм.

olade.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о
СайдбарКомментарии (0)