Перейти к контенту

Какая должна быть температура нагрева тормозных устройств двухкамерный – ГОСТ 22235-2010

Содержание

Мифы и правда о тормозах — DRIVE2

Очень часто автовладельцы считают, что тормозная жидкость в их автомобиле вечная и заливается раз и навсегда, или что тормозные колодки следует менять, только когда они сотрутся до металла. А часто ли меняются тормозные диски или барабаны? В большинстве случаев, когда износ превышает двукратный, а то и более указанного в инструкции. Ко всем деталям тормозной системы предъявляются достаточно высокие требования: ведь от их исправности зависит безопасность автомобиля на дороге.

МИФ: "Тормозную жидкость менять не надо"

Это не так. Тормозная жидкость гигроскопична – обладает способностью впитывать в себя влагу. Соответственно температура кипения снижается. Одно из требований, предъявляемых к тормозным жидкостям, – это высокая температура кипения. Чем она выше, тем более качественной считается тормозная жидкость. При частом использовании тормозов диски и колодки сильно нагреваются, после достижения определенной температуры тормозная жидкость может закипеть, и автомобиль может остаться без тормозов, причем неожиданно.

К тому же тормозная жидкость работает и как смазка в главном и рабочих цилиндрах, вымывая продукты трения. При нерегулярной смене вода, накапливающаяся в системе, вызывает коррозию – первыми страдают резиновые манжеты (цилиндр начинает подтекать), затем появляются раковины на зеркале цилиндров. Тут уже требуется недешевый ремонт тормозной системы. А ведь его можно было бы избежать, просто вовремя поменяв жидкость.

МИФ: "Дисковые тормоза лучше барабанных"

Действительно, дисковые тормоза обладают существенным преимуществом перед барабанными. Это стабильность работы, лучшие условия охлаждения и очистки, более высокая эффективность, меньшие вес и размер. Но есть и недостатки. Площадь колодок у дисковых тормозов меньше, чем у барабанных, поэтому для них нужны большие усилия на приводе и соответственно более высокое давление в гидросистеме.

МИФ: "Колдун" не нужен"

Некоторые автовладельцы называют его "колдуном", считая регулятор давления загадочным и бесполезным устройством. На самом деле это важный элемент тормозной системы для автоматического изменения величины тормозной силы в зависимости от усилия на педали (давления рабочей жидкости в главном цилиндре), загрузки автомобиля и интенсивности его замедления. Торможение будет эффективным и безопасным, когда передние тормоза срабатывают более эффективно и несколько раньше, чем задние. Для того чтобы тормоза работали именно так, в систему встраивается регулятор давления. Он изменяет и распределяет тормозные усилия между передними и задними колесами в зависимости от загруженности автомобиля и нагрузки на оси.

Без регулирования они одинаковы, а для каждого варианта загрузки машины должно быть свое соотношение, обеспечивающее опережающую блокировку передних колес, чтобы автомобиль не занесло. Нельзя исключать регулятор из работы (глушить, удалять) или заменять его, нагрузочную пружину и иные детали привода нештатными, похожими по внешнему виду или от другой модификации автомобиля. Их характеристики могут не соответствовать параметрам машины.

Когда менять "тормозуху"?

В большинстве автомобилей достаточно менять тормозную жидкость раз в два года или каждые сорок тысяч километров пробега. Жидкость должна быть светлой и прозрачной и желательно рекомендованной заводом-изготовителем автомобиля. Если она темная и на дне бачка образовался осадок – не тяните с заменой. Не забудьте промыть систему и тщательно вымыть бачок.

Чем плох асбест?

Асбестовые фрикционные накладки (колодки) производятся некоторыми производителями до сих пор, в частности, их выпускают в России. Но крупнейшие автопроизводители мира уже давно отказались от установки асбестовых тормозных колодок на свои автомобили: во время торможения, когда происходит трение асбестовой накладки о диск, образуется мельчайшая пыль, которая очень токсична и опасна для человеческого организма и окружающей среды. Безасбестовые колодки на сегодняшний день получили самое активное распространение: в качестве армирующего элемента в них используется медная, латунная стружка, стальная вата, полимерные композиции и другие элементы.

Что такое вспомогательная тормозная система?

Вспомогательная тормозная система начинает действовать при разгерметизации одного из рабочих контуров (вытекает тормозная жидкость). В этом случае в бачке с тормозной жидкостью, разделенном на два независимых объема, уровень понижается до критической отметки. Далее он продолжает понижаться только в объеме неисправного контура, а объем исправного сохраняет критический уровень тормозной жидкости в системе. Поэтому всегда необходимо следить за уровнем жидкости в бачке.
Какие бывают тормоза?

Все автомобильные тормозные механизмы правильно называть колодочными. В свою очередь, их разделяют по названиям пар трения: колодочно-дисковые (дисковые) и колодочно-барабанные (барабанные). Дисковые бывают с подвижным или неподвижным суппортом. Наибольшее распространение получили механизмы с подвижным суппортом, которые конструктивно исключают неравномерный износ колодок. Эффект самоподвода колодок обеспечивается манжетой поршня (есть и более сложные системы подвода колодок в дисковых тормозах). По конструктивным особенностям дисковые тормоза эффективнее барабанных. Для лучшего отвода тепла из рабочей зоны часто используют вентилир

www.drive2.com

До какой температуры нагреваются дисковые тормоза?

Принцип работы дисковых тормозных механизмов довольно прост: тормозные колодки с фрикционным материалом сжимают чугунный тормозной диск. Разумеется, от трения диск нагревается, но насколько сильно? Давайте узнаем!

Разобраться в этом вопросе поможет родстер Honda S2000 с задними дисковыми тормозами и термальная камера Flir T1K. Заднюю часть автомобиля приподняли на домкратах, чтобы запустить мотор и набрав обороты, на первой передаче постепенно затягивать рычаг стояночного тормоза, измеряя с помощью тепловизора количество тепла, выделяемое задними тормозными механизмами. В качестве контрольных точек выбраны пять позиций дискового тормозного механизма.

Точка 1 — это передний край тормозной колодки, точка 2 — тормозной диск перед колодкой, точка 3 — тормозной диск после прохождения через суппорт, точка 4 — ступица колеса и, наконец, точка 5 — задняя часть тормозной колодки. Даже при свободном вращении тормозного диска сверхчувствительная инфракрасная камера выявляет небольшие искривления диска на основе разницы температур. Разумеется, при срабатывании стояночного тормоза температура диска начинает повышаться.

Тормозной диск после суппорта становится немного горячее, а в целом температура поверхности достигает 138 °C. В обычном «гражданском» режиме вождения температура дисков и колодок вряд ли когда-нибудь превысит 200 °C, но на гоночной трассе механизмы могут запросто нагреваться и до 500 °C. Тормозная жидкость также может нагреваться, поэтому она рассчитана на температуру кипения свыше 200 °C.

Впрочем, со временем температура кипения может стать значительно ниже, поскольку жидкость поглощает влагу. Даже после того, как тормозные диски нагрелись свыше 100 °C, тормозная магистраль остаётся довольно прохладной. Также довольно интересно, что колёсные диски автомобиля могут работать как своеобразные радиаторы и рассеивать тепло от тормозных механизмов в атмосферу.

www.popmech.ru

Физика нагрева тормозов — Subaru Forester, 2.0 л., 2010 года на DRIVE2

[Пролог]
[Эта статья]
[Завершение]
[Ответвление]
[Обобщение]
[О гидравлике]

ВЛИЯНИЕ ВЕСА ТОРМОЗНЫХ ДИСКОВ

Чем больше вес тормозных дисков — тем лучше они держат нагрев. Если значение веса для вас кажется сомнительным, — вспомните эксперимент, который каждый день проводите дома: полный чайник воды будет нагреваться до кипения гораздо дольше, чем наполовину пустой. Да, на практике торможения всё сложнее, ибо многое зависит качества материалов, наличия/отсутствия термообработки и даже конструкции тормозных дисков. Однако если при расчетах исходить из мысли, что все тормозные диски одного говна (или благородных металлов), то можно сделать определенные выводы.

Скачать калькулятор температуры тормозных дисков

Тп = ((Кд-Кп)/(417*Вд))+Тв
Кд = (Ва*v2^2)/2
Кп = (Ва*v1^2)/2

Тп — температура тормозных дисков после торможения (°С)
Тв — температура тормозных дисков до торможения (°С)
Кд — кинетическая энергия до торможения (Дж)
Кп — кинетическая энергия после торможения (Дж)
Ва — вес автомобиля (кг)
Вд — вес тормозных дисков (общий) (кг)
v1 — скорость автомобиля до торможения (м/с)
v2 — скорость автомобиля после торможения (м/с)
417 — некое значение, связанное с материалом дисков, примерно одинаково у всех

Пример вычисления:
Масса моего пустого Subaru Forester SH = 1580 кг.
Возьмем торможение со 150 до 50 км/ч при температуре 25°С.
Вес тормозных дисков 4pot WRX = 24 кг.

Кд=(1580*41.66^2)/2=1371088 Дж
Кп=(1580*13.88^2)/2=152197 Дж
ТП(24кг)=((1371088-152197)/(417*24))+25=147°C

Сравним температуру тормозных дисков весом 24 и 44кг на разных скоростях.

График позволяет придти к следующим выводам:
*чем тяжелее тормозные диски, тем сложнее их нагреть;
*температура тормозных дисков имеет нелинейную зависимость от скорости;
*чем выше скорость, тем критичнее становится значение массы тормозных дисков;
*существенной разница в нагреве тормозных дисков становится после 160 км/ч.

Теперь сопоставим эти тормоза после нескольких повторяющихся торможений, когда тормозные диски еще не успели остыть, только теперь будем считать торможение со 100 до 0 км/ч. Во избежание загромождения расчетами пишу только конечные результаты из калькулятора.

Для перевода км/ч в м/с нужно (х*1000)/3600, где х — значение скорости в км/ч.

Пример расчета температуры после повторного торможения:
ТП(1е торможение)=((1371088-152197)/(417*24))+25=147°C
ТП(2е торможение)=((1371088-152197)/(417*24))+147=172°C

ТП(294x24+290x18, 24кг, 100->0)=85->145->205->265->325->385->445°C
ТП(316x30+290x18, 44кг, 100->0)=58->91->124->157->190->223->256->289->322->355->388->421°C

Усредненные гражданские колодки выдерживают 400-450°С.

Разумеется, сравнение приблизительное и трактуется как: «Вы за мгновение разогнались до 100 и ваши тормоза совсем не успели остыть», однако разница полностью соответствует тому, что показали мои полевые испытания: тормозные диски на 4pot WRX очень быстро перегреваются в сравнении с Outback 3.6. Если у первых «шаг» составляет ~60°С, то у вторых всего 25-30. Конечно, вы не набираете сотню за секунду, на это уходит время, ваши тормозные диски при этом успевают немного остыть, поэтому температура будет расти дольше, но порядок чисел более чем очевиден и подтверждается практикой.

В жизни размеры тормозов имеют еще более весомое значение, поскольку чем больше тормозные диски, тем больше у них площадь соприкосновения с воздухом. Поэтому большие тормоза не только меньше греются, но и лучше охлаждаются. К сожалению, я не знаю формулы для привязки к температуре, но подтверждение зависимости мы встречаем каждый день: зимой в рамках одного здания в аудиториях с большими окнами намного холоднее. Отсюда же вылезает преимущество тормозных дисков с вентиляцией (обычно речь идет о задних): у них не только площадь соприкосновения с воздухом в 2 раза больше, но и происходит принудительное вытеснение горячих газов турбулентностью, образуемой каналами охлаждения.

ЗНАЧИМОСТЬ КАЧЕСТВА ТОРМОЗНЫХ КОЛОДОК

На ресурсе АвтоДела было проведено всестороннее исследование поведения тормозных колодок, нас интересует зависимость коэффициента трения колодок от их температуры. На графике видно, что в целом бюджетные колодки при нагреве свыше 150°С имеют линейную потерю в коэффициенте трения.

www.drive2.ru

До какой температуры могут нагреваться тормозные диски

При торможении диски наших автомобилей сильно нагреваются, причем так, что на них без проблем можно пожарить глазунью! Проблема перегрева была, есть и всегда будет актуальна. Инженеры-гении постоянно дорабатывают форму тормозного диска, изменяют состав сплава, доводят до идеала его систему вентиляции. Но навряд ли когда-нибудь будет разработана тормозная система, которая не перегревается. Это практически невозможно.

Тормозные диски обычного седана при городском ритме езды нагреваются максимум до двухсот градусов. Если сильно постараться, то диски маломощной и легкой машины можно разогреть до 400–500 градусов. Диски спортивных машин могут нагреться до 700 градусов (при такой температуре они раскаляются до красна и колодки красиво дымятся)! А про Формулу-1 и говорить страшно. Как видите, температуры очень высокие.

Чем чреват перегрев тормозной системы

При перегреве дисков и колодок тормозная система почти полностью перестает работать. То есть колодки скользят по раскаленному диску как по маслу. Это еще не все. Если сильно перегреть колодки, то они придут в негодность, то же касается и тормозных дисков. Поэтому перегрев тормозной системы — крайне неприятная штука, которую мы с вами не должны допускать.

Сегодня днем я проводил эксперимент. Катался я на 980 килограммовом седане. Спереди — вентилируемые тормозные диски, сзади — барабаны. Барабаны плохо тормозят, поэтому вся нагрузка будет идти на передок.

Что я делал? Я разгонялся до 150 км/ч и начинал резко тормозить. После первого торможения диски посинели. Затем я разогнался второй раз и начал тормозить, но уже более плавно. Сбавив скорость до 60 км/ч, я почувствовал, что тормоза куда-то пропали. Как бы я не давил на педаль, скорость практически не падала. Пришлось тормозить двигателем. После остановки диски равномерно покрылись темно-синим цветом. На третий эксперимент я не решился, пожалел машину.

Сталь начинает желтеть от 150 до 280 градусов Цельсия, синеть от 300 до 450 градусов, чернеть от 450 до 500. Краснеть тормозные диски начинают от 500 градусов, а светиться ярко-оранжевым они начинают где-то от 750–800 градусов.

Думаю, я нагрел тормозные диски где-то до 400–450 градусов. При этом, повторюсь, тормоза практически пропали. После остывания колодок я снова мог тормозить, но уже не так хорошо, как до экспериментов (видимо колодки пришли в негодность).

А вот так тестируют тормоза Формулы 1

Из всего вышеизложенного делаем вывод

Перегрев тормозной системы — плохо. Если вы спокойно катаетесь по городу, то эта проблема не должна вас волновать. Но стоит быть осторожными при спуске с больших склонов (на склонах лучше притормаживать двигателем), в этом случае можно перегреть колодки, и тогда автомобиль перестанет тормозить.

Источник avtoberloga.ru

Многие автомобилисты сталкиваются с такой проблемой, как перегрев передних или задних тормозных дисков. Проблема эта довольно актуальна среди начинающих автолюбителей, влияющая на безопасность водителя и пассажиров. Так что же делать, если греются тормозные диски? И почему это происходит? Подробнее об этом и пойдет речь в нашей статье.

На самом деле, современные представители автопрома – это мощные аппараты, способны развить большую скорость за относительно короткий промежуток времени. Соответственно, стремительный разгон тяжелого металлического объекта рано или поздно нужно будет так же быстро останавливать. Как результат: надежная и быстрая работа тормозной системы влияет на безопасность водителя при движении.

Как работает тормозная система

Устройство автомобильной системы торможения немного напоминает колодочный тормоз, которым оснащено большинство велосипедов. Правда, есть небольшое отличие: на велосипеде при срабатывании тормозов, колодки вступают в трение с ободом, а на автомобилях – с тормозным диском (или барабаном). К тому же велосипедные тормоза срабатывают через кабель, а на авто – при помощи гидравлики. Останавливается транспортное средство в связи с созданием трения между тормозным диском и колодкой. Этот процесс имеет свои последствия, главное из которых – образование большого количества тепла, которое нужно куда-то девать. Для вывода создаваемой тепловой энергии существует вентиляция дисковых тормозов, что была разработана специально для этой цели.

Дисковые тормоза неоднократно доказывали свою эффективность во время многочисленных опытов, что автоматически возвышает их на первое место среди подобных аналогов. Снижение температуры рабочих поверхностей происходит за счет воздушного охлаждения: при работе в системе происходит постоянная циркуляция воздуха.

Как устроена тормозная система

К списку достоинств дисковых тормозов стоит отнести также «автономную» очистку. Быстрая частота вращения дисков удаляет всю скопившуюся на поверхности детали грязь и пыль. Многие специалисты считают, что современная дисковая тормозная система весьма популярная благодаря своей эффективности, возможности вносить некоторые регулировки в работу системы, надежности и длительному сроку эксплуатации. Последний пункт очень актуален, учитывая нынешние цены на запчасти.

Классификация тормозных дисков

Для получения более ясной картины стоит провести классификацию тормозных дисков. Это улучшит ваши познания в данной области, а также поможет с выбором, если вы все еще сомневаетесь, какие диски подойдут вам лучше всего.

По конструкции

Существует две основных разновидности конструкции, согласно которым происходит распределение дисков. А именно:

В состав вентилируемых тормозных дисков входят две основные части, находящиеся друг от друга на определенном расстоянии. Внутренняя часть диска не является цельной, напортив, это своеобразная вентилирующая система, напоминающая чем-то лопасти турбины. При движении автомобиля диски вращаются, что позволяет этим лопастям создавать сильные воздушные потоки, благодаря которым происходит охлаждение тормозного диска. Система циркуляции воздуха обеспечивает отвод горячего воздуха от диска. Таким образом, с одной стороны поступает холодный воздух, а с другой – отходит тепло.

Конструкция вентилируемых дисков

Внедрение столь хитроумной системы охлаждения при помощи радикальных каналов позволило значительно улучшить тормозную мощность транспортного средства за счет увеличения площади охлаждения.

Невентилируемые тормозные диски не отличаются специфичной конструкцией или формой. Это обычное изделие, являющееся цельной пластиной. В некоторых случаях производители наносят на поверхность дисков специальные слоты или насечки. Главным отличием этого вида является его относительно небольшая стоимость на рынке, но при этом он не охлаждается при движении, как это происходит с вентилируемым аналогом.

Невентилируемые диски – более дешевый вариант

По материалу изготовления

Более-менее ознакомившись с разновидностью конструкции, стоит рассмотреть классификацию по материалу изготовления. Производство тормозных дисков осуществляется из трех основных материалов:

Говоря слово «металл», стоит отметить, что в данном случае диски могут быть изготовлены из стали и чугуна.

Тормозные диски из металла

К самым распространенным материалам для производства тормозных дисков, в первую очередь, стоит отнести чугун. Он очень прочный, дешевый, к тому же детали, изготовленные из чугуна, обладают отличными фрикционными свойствами. Казалось бы, все отлично, если бы не одно большое «но». Дело в том, что такие диски под воздействием высокой температуры довольно быстро подвергаются короблению, а если при движении на разогретый чугун попадет хоть небольшое количество воды, то он подвергается разрушению. Ко всему прочему вес чугунных дисков очень большой и они подвергаются коррозии при длительных стоянках транспортного средства. Поэтому использование таких дисков ограничено.

Тормозные диски, изготовленные из металла: 1 – чугун; 2 – сталь; 3 – нержавейка

Если говорить о «спорткарах» или мотоциклах, то они оснащаются дисками из нержавеющей стали. Если сравнивать «нержавейку» с чугуном, то она немного уступает во фрикционных свойствах, в результате чего такие диски производятся несколько больше и массивнее от чугунных аналогов. Многие производители используют также и обычную сталь, но если речь идет только о повседневных (народных) автомобилях.

Углепластик

Еще со средины 70-х спортивные автомобили стали оснащаться углепластиковыми тормозными дисками. Материал этот практически не имеет никаких недостатков, за исключением одного – стоимости. Единственный недостаток и не позволил данному материалу «выйти в массы». Но если не учитывать заоблачную цену, то использование карбона – это отличный вариант: хорошие фрикционные качества, незначительный вес и, самое главное, устойчивость к высоким температурам.

Тормозные диски из карбона (углепластика)

Изделия из углепластика устойчивы к образованию коррозии, к тому же они не подвергаются короблению при эксплуатации. Но стоит отметить, что заоблачная стоимость дисков из углепластика – это не единственный минус, который стоит на пути у тысяч автомобилистов. Купив и установив тормозные диски из углепластика, вам необходимо будет также взять несколько уроков по правильному торможению. Если с торможением на обычных стальных дисках у вас не возникнет никаких проблем (чем сильнее жмешь на педальку, тем эффективнее тормозит автомобиль), то с карбоновыми дисками все обстоит по-другому. В таком случае существует лишь две позиции: движение и остановка – настолько суровые карбоновые тормоза.

Керамика

Если сравнивать диски из керамики с углепластиковыми, то первые, безусловно, побеждают по количеству плюсов. Керамические диски не имеют столь фантастических фрикционных свойств, но они все же обладают рядом преимуществ, что делает их более приспособленными к отечественному автомобильному рынку.

Преимущества керамических тормозных дисков:

  • высокая прочность;
  • устойчивость к образованию коррозии;
  • небольшой вес;
  • длительный эксплуатационный период.

Если сравнивать керамические диски с чугунными, то весят они почти в два раза меньше, что увеличивает срок жизни всех элементов подвески автомобиля. На новых дисках из керамики вы сможете проехать больше 300 тысяч километров.

Так выглядят тормозные диски из керамики

Недостатки керамики:

  • эффективность дисков, охлажденных до определенной температуры, уступает аналогам из железа;
  • при торможении керамические диски могут издавать характерный режущий слух водителя звук;
  • высокая стоимость изделия при сравнении с металлическими дисками.

Важно! Если сравнивать литые диски с коваными, то стоимость первых может быть в несколько раз ниже. К тому же найти подходящие кованые диски – это настоящее испытание для водителя.

Оптимальная рабочая температура тормозного диска

Если не брать во внимание диски из керамики, которые способны противостоять температуры на отметке 1000 градусов, то серийные тормозные диски выдерживают максимальную температуру в 250-300 градусов. Преодоления этого барьера грозит неизбежным повреждениям деталей тормозной системы.

Каким требованиям должны отвечать качественные тормозные диски? На самом деле, речь здесь идет о:

  • хороших фрикционных свойствах;
  • повышенной прочности материала;
  • устойчивости к образованию коррозии;
  • высокой теплопроводности;
  • отсутствии деформирования при высоких температурах.

Измерение температуры тормозных дисков

Исходя из вышеупомянутых требований, можно лишь догадываться, каким жестоким тестам подвергаются тормозные диски перед выходом на рынок. И это правильно, ведь их перегрев ухудшает эффективность работы тормозной системы в целом. В случае перегрева тормозные колодки, независимо от их цены и качества, не смогут справляться со своей основной задачей – сцепляться с фрикционной поверхностью диска.

Из-за чего происходит перегрев?

Изначально хотелось бы отметить, что главной причиной нагревания тормозных дисков является трение – основная функция, выполняемая ими. В результате трения поверхности диска и колодки температура мгновенно поднимается, но для остывания требуется гораздо больше времени.

Вспомните, сколько вы встречаете светофором по пути на работу и какое между ними расстояние. Задумайтесь на секунду, хватит ли времени между остановками для остывания диска? Конечно же, нет, отсюда и перегрев.

Стиль вождения – фактор, который нельзя упускать. Каждый водитель по-своему уникален и эта уникальность отражается на его манере вождения. Из этого следует, что более агрессивная и экстремальная езда приводит к тому, что тормозные диски практически всегда будут разогреты до высокой температуры.

Еще одна причина – это выход из строя каких-либо элементов системы торможения. По большей части данную причину можно поместить в один ряд со стилем вождения, поскольку водитель напрямую влияет на работоспособность системы (правильный уход, своевременное прохождения ТО и так далее).

Основные причины перегрева тормозных дисков

Рассмотрим более подробно причины перегрева тормозных дисков, связанных с неисправностями системы торможения:

  • деформация (изменение формы) тормозного диска;
  • уменьшение толщины фрикционной части тормозных колодок или рабочей поверхности диска;
  • плохое качество деталей;
  • задние барабанные тормоза. Наличие такой смешанной системы направляет основную часть нагрузки на переднюю ось, ведь барабанный тормоз не способен полностью выполнять свою задачу.

Чем грозит перегрев дисков?

Последствия интенсивного нагревания дисков заключаются в образовании некой пленки, разделяющей диски и колодки. Наличие пленки, образованной вследствие метаморфозов свойств материала деталей, ухудшает фрикционные свойства поверхностей деталей. Иными словами, эффективность системы торможения ухудшается. Причем если вам по какой-то причине удастся приспособиться к такому стилю торможению, то избежать закипания жидкости вам будет не под силу.

Какие последствия перегрева тормозных дисков?

Экстремальное повышение температуры тормозных дисков негативным образом влияет и на тормозные колодки и суппорта, постепенно приближая их преждевременную «кончину».

Важно! Если замена тормозных колодок не помогла устранить перегрев, то причина, скорее всего, кроется в коррозии, образовавшейся вокруг резинки главного цилиндра сцепления.

Как не допустить перегрева?

Для предотвращения подобных ситуаций необходимо придерживаться некоторых рекомендаций.

Способы предотвратить перегрев

  1. Прохождение регулярного технического обслуживания – это не очередная возможность для перестраховщиков вас ограбить, а рекомендации ученых, полученных в результате многочисленных исследований. Не стоит игнорировать правила, созданы много лет назад для вашей же безопасности.
  2. Агрессивное вождение – враг вашему автомобилю. Интенсивные резкие торможения приводят к нагреванию металла (диски греются намного быстрее, чем остывает). Как результат, работа тормозной системы нарушена.
  3. Уровень тормозной жидкости в системе – еще один фактор, влияющий на работу тормозов. Проводите регулярную проверку уровня жидкости.
  4. Не забывайте о замене тормозных дисков. Каждый производитель указывает на своей продукции километраж, после прохождения которого необходимо проводить замену. Как исключение, в некоторых случаях износ дисков и колодок может произойти намного раньше (зависит от условий эксплуатации).
  5. Погоня за экономией – это не лучший вариант. Покупая дешевую низкокачественную продукцию, вы подвергаете себя опасности. Не нужно экономит на собственной безопасности.
  6. Избегайтесь «самолечения». Замену элементов системы торможения лучше предоставить специалистам. Лишь профессионалы вправе отвечать за качество выполненной работы.
  7. Пользование услугами автомойки. Старайтесь избегать мойки автомобиля сразу после движения, когда элементы системы торможения еще горячие. В таком случае нужно немного подождать, пока диски остынут. Казалось бы, простое правило, но оно позволит спасти тормозные диски от возможных разрушений, вызванных резкими перепадами температуры.

Важно! Иногда проблемы с перегревом возникают как раз после самостоятельной замены тормозных колодок. В неумелых руках средства для защиты могут стать причиной аварии.

Возможно, проблема в новизне?

Как уже говорилось ранее, очень часто перегрев тормозных дисков происходит сразу после замены колодок. Узнать это вы сможете лишь при резком торможении – вы должны учуять неприятный горелый запах.

Для предотвращения подобных ситуаций нужно:

  • Обезжирить фрикционную поверхность дисков, тем самым избавившись от остатков консервационной смазки;
  • Зачистите ступицу от возможного мусора. Имеется в виду не вся поверхность ступицы, а лишь та часть, к которой крепятся диски. Используйте для этого жесткую металлическую щетку;
  • Осмотрите все пальцы суппортов на предмет наличия солидола. Его следует удалить, а вместо этого нанести специальную смазку. Если этого не сделать, то возрастает риск заклинивания конструкции суппорта.

Чистка поверхности диска и пальцев тормозного суппорта

В качестве заключения

Перегрев дисков являет собой серьезную проблему, игнорировать которую ни в коем случае нельзя. К счастью, практически всегда вы сможете самостоятельно устранить эту причину. Зачастую перегрев случается из-за предпочтений водителя ездить жестко и агрессивно.

Разумеется, необходимо периодически проводить визуальный осмотр дисков и тормозных колодок на наличие разного рода повреждений: при необходимости менять колодки на новые, растачивать диски и так далее. И помните: на кону ваша безопасность и ваших близких!

Источник na-dorogu.ru

Процесс торможения автомобиля основан на силе трения и не может не сопровождаться выделением тепла. Тормоза постоянно нагреваются и остывают. На современных автомобилях тормозные диски могут устанавливаться не только на передней, но и на задней осях. Тормоза дискового типа более эффективны, чем барабанные, проще в обслуживании и надёжнее.

Принцип работы такого тормоза заключается в давлении поршня (6) на одну из тормозных колодок (4), которая начинает тереться о диск. Вторая колодка давит на него автоматически корпусом суппорта, который движется по направляющим (10). Колодки с 2 сторон начинают сжимать диск — в результате вращение колес замедляется.

Разумеется, выделяется тепло. Температура дисковых тормозов при интенсивной езде достигает 250-300°С. Для спортивных автомобилей они изготавливаются из керамики, которая может выдержать нагрев до 1000°С без деформации. Но в массовую продажу они не поступают из-за высокой стоимости.

Почему греются тормозные диски

Нагрев не является неисправностью, если он происходит равномерно с двух сторон и температурное значение не выходит за допустимые нормы. В этой статье под словом “греются” будем подразумевать перегрев.

Большинство дисков делают из чугуна. Этот металл подходит для ежедневного использования — он недорогой и обладает хорошими фрикционными качествами. Но у него есть и недостатки: из-за частого торможения чугун сильно нагревается — вплоть до появления дыма. Колодки начинают плавиться и коробиться.

Чтобы снизить нагрев, а точнее — ускорить остывание, диски выпускают с пустотами внутри (вентилируемые). На характеристики это почти не влияет.

Для улучшения характеристик начали применять перфорацию и сплавы. Если заменить стандартные тормоза на перфорированные, они станут остывать быстрее.

По какой причине греются тормозные диски? Причина почти всегда — трение. В 99% случаев. Причем неважно, передние греются или задние, слева или справа. Обнаружив проблему, автолюбители обычно проверяет свободный ход колеса:

  • снимают автомобиль с ручника или передачи;
  • поддомкрачивают машину;
  • вращают колесо.

Если слышен шорох либо колесо вращается с усилием, проблема наверняка в тормозном суппорте, который не отпускает колодку (или колодки), даже когда педаль отпущена.

Часто ржавчина покрывает зеркало его цилиндра или наружные стенки тормозного поршня, что препятствует его свободному ходу. Также она может покрыть направляющие. Восстановление суппорта на СТО называют разработкой. Нужно поменять резиновые уплотнения — сделать это можно только при наличии ремкомплекта. Иногда приходится менять и поршень.

Еще одна причина, почему колесо вращается туго, а тормоза греются — износ ступичного подшипника (когда греется тормозной диск с одной стороны). Активно нагреваясь, он передает тепло на дисковые тормоза. Правда, в этом случае движение будет сопровождаться воем или гулом на определенных скоростях.

Ну а если в подвешенном состоянии колесо вращается свободно, а после поездки сильно обжигает пальцы? Это может происходить по ряду причин:

  • Сильная выработка или деформация дисков. При уменьшении их толщины быстрее происходит нагрев.
  • Установка новых некачественных колодок.
  • Замена тормозной жидкости на несоответствующую.
  • Большая выработка колодок.
  • Греются передние тормозные диски у автомобилей с задними барабанными тормозами — потому что на переднюю ось приходится большая нагрузка при торможении.
  • Чрезмерно агрессивная езда. При постоянных ускорениях и резких остановках тормоза не успевают остывать.
  • Расслоение внутренней поверхности тормозного шланга. Это препятствие для циркуляции тормозной жидкости — колодки не смогут нормально расходиться.
  • Воздух в контуре тормозной системы.

Передние тормозные диски

  • износ;
  • подклинивающий суппорт;
  • низкое качество колодок;
  • агрессивная езда с задними барабанными тормозами;
  • установка колодок выполнена неточно.

Источник ddcar.ru

lubimauto.ru

Подшипники качения температура нагрева - Энциклопедия по машиностроению XXL

При неподвижной посадке для ускорения работ по сборке с валом деталей их предварительно нагревают до 80—100° С в масле или воде, температура масла не должна превышать 100° С. При нагреве деталь не должна касаться дна ванны, а лежать на сетке, подкладках из дерева или висеть на крючке. Особенно строгий контроль ведут за медленным и равномерным нагревом деталей, если они нагреваются в воде. Подшипники качения разрешается нагревать только в масле.  [c.171]
В случае герметизации соединений детален, работающих в условиях повышенной вибрации, рекомендуется отвердить пленку эластомера при температуре 120—145°С в течение 30 мин в термошкафу. При более высоких температурах пленка становится жесткой. Кольца подшипников качения разрешается нагревать до температуры не выше 120° С. Максимальная толщина пленки, которую рекомендуется наносить на детали при прессовом соединении, должна быть не более 0,1 мм. При необходимости восстановить деталь, имеющую износ более 0,1 мм, на изношенную поверхность приклеивают эластомером фольгу или пластину толщиной до 1 мм при условии, если приклеенная пластина или фольга работают на сжатие и сдвиг. Пленку наносят на фольгу или пластину равномерно по всей поверхности.  [c.78]

Смазка подшипников качения. Смазка уменьшает трение, защищает рабочие поверхности от коррозии и загрязнения, снижает шум и способствует более равномерному нагреву подшипника и отводу тепла от него. Чем больше скорость, меньше нагрузка и ниже температура, тем меньше должна быть вязкость смазки и наоборот.  [c.281]

Нагрев может быть осуществлен в кипящей воде при температуре нагрева до 100° С (применяется, например, при посадке турбинных дисков на вал ротора) или.в горячем масле, нагретом до температуры 85—90° С. Этот метод наиболее часто применяется при посадке подшипников качения. Нагрев производится также газовыми горелками, в электрических, газовых или нефтяных печах и горнах или электрическими нагревателями с питанием током как промышленной, так и высокой частоты.  [c.485]

При посадке подшипников температура на/рева берется в пределах 60 н-100° С. Столь низкая температура нагрева не ухудшает термическую обработку деталей подшипника качения. В некоторых случаях при монтаже подшипника вместо нагрева применяют охлаждение шейки вала, а при запрессовке наружного кольца в корпус — разогревание последнего.  [c.141]

Нагрев подшипников выше определенной температуры также служит признаком неправильной сборки. К примеру, температура нагрева подшипников качения главных валов в металлорежущих станках не должна превышать 70 С, а подшипников скольжения 60° С.  [c.242]

Температура нагрева подшипников качения не должна превышать 95° С.  [c.471]

Испытание станков на холостом ходу. Испытание на холостом ходу производят на всех ступенях подач и скоростей, начиная с низшей. На верхней ступени скорости шпиндель станка должен вращаться до достижения установившейся температуры подшипников шпинделя, но не менее получаса. Температура допустимого нагрева подшипников шпинделя не должна превышать 70° С для подшипников скольжения, 85° С для подшипников качения и 50° С для механизмов подач и других механизмов, станков.  [c.277]


Испытание на холостом ходу производится для проверки работы всех механизмов. Испытание механизмов главного движения проводится на всех скоростях, начиная с низшей на верхней ступени скорости шпиндель станка должен вращаться до достижения определенной установленной температуры подшипников шпинделя, но не менее получаса. Механизмы подач испытываются при включении всех рабочих подач. Температура нагрева подшипников шпинделя не должна превышать 60° для подшипников скольжения, 70° для подшипников качения и 50° в механизмах подач и других механизмах станка.  [c.364]

Нагрев деталей обычно производится в масляных ваннах до температуры, не превышающей 100—120°. Время нагрева зависит от размеров и формы деталей для подшипников качения достаточно 15— 20 мин.  [c.482]

На машинах, работающих по таким схемам, можно осуществлять только симметричный цикл. Число оборотов образца у современных машин составляет до 12 ООО в минуту, поэтому они оборудуются быстроходными подшипниками качения. Применяется циркуляционная смазка жидким маслом с малой вязкостью, что особенно важно для испытаний, проводимых при повышенных температурах, когда подшипники шпинделя нагреваются вследствие теплопередачи от горячего образца.  [c.315]

Температура нагрева подшипника не должна превышать 100°, в противном случае возможно ухудшение механических свойств металла колец и тел качения. Требуемая температура масляной ванны достигается применением электрических регуляторов (при электронагреве) или использованием баков с двойными стенками, между которыми находится кипящая вода.  [c.262]

Детали типа толстостенных колец (кольца подшипников качения) эффективно и рентабельно нагревать индукционными устройствами, питаемыми током промышленной частоты (50 гц). Эти устройства малогабаритны, легко встраиваются в поточную автоматическую линию и обеспечивают скорость нагрева от 2 до 5 град/сек и выше. При малой частоте тока достигается равномерное распределение тепла по сечению детали, а температуру нагрева можно точно регулировать соответствующей продолжительностью включения тока. Индукционное устройство представляет собой статор с радиально расположенными полюсами, выполненными из пластин низкоуглеродистой электротехнической стали, и обмотки. Нагреваемые детали вводятся внутрь статора, где возникает сильное электромагнитное поле.  [c.337]

Регулирование подшипников качения. Контроль подшипников качения заключается в проверке посадки их колец, радиального и осевого люфта, состояния рабочих тел вращения и беговых дорожек, температуры корпуса. Допустимая температура нагрева корпуса подшипников качения не должна превышать 60—70 С. Радиальные зазоры подшипников качения не регулируют. Осевой зазор конических подшипников качения в зависимости от конструкции регулируют смещением их внешнего или внутреннего кольца.  [c.505]

При монтаже подшипников качения следует соблюдать особую аккуратность, так как неправильный монтаж является причиной их преждевременного износа. Перед монтажом подшипник тщательно промывают в бензине, нагревают в масляной ванне в течение 10—15 мин до температуры не выше 100° С, затем устанавливают на вал при помощи специальных оправок. Устанавливать подшипники на место ударами молотка непосредственно по кольцу запрещается, так как при этом можно повредить кольца и шарики (ролики). Немедленно после установки подшипник смазывают, потому что горячее масло, в котором его нагревали, быстро стекает и подшипник остается без смазки.  [c.275]

Нормальная температура нагрева подшипников станка не должна быть выше 50—70°. В шпиндельном узле станка нагрев подшипников скольжения допускается до 60°, подшипников качения — до 70°, а других подшипников — не выше 50°.  [c.48]

Пример 24. Рассчитать и подобрать по ГОСТу подшипники качения вала конической шестерни зубчатого редуктора (рис. 186) при следующих данных радиальная нагрузка на подшипник / й i = 280 кГ, радиальная нагрузка на подшипник 2 420/сГ осевая нагрузка, действующая на вал и воспринимаемая первым подшипником, /4 = 60 кГ диаметр вала под подшипником d = 40 мм угловая скорость вала п = 630 об/мин нагрузка на подшипники с легкими толчками температура нагрева подшипников не превышает 70° С.  [c.419]

Пример 18.1. Рассчитать и подобрать по ГОСТу подшипник качения при следующих данных радиальная нагрузка на подщипник = 7940 Н осевая = 880 Н диаметр вала в месте посадки подшипника d = 60 мм угловая скорость вала ю = 10,5 рад/с нагрузка на подшипник постоянная и спокойная температура нагрева подшипника не превышает 60 °С по условиям монтажа и работы подшипник самоустановки не требует номинальная долговечность подшипника L = 20000 ч.  [c.319]

Пример 18.2. Рассчитать и подобрать по ГОСТу подшипники качения вала конической шестерни зубчатого редуктора (см. рис. 12.31) при следующих данных радиальная нагрузка на подшипник 1Р , = 42(Х) Н радиальная нагрузка на подщипник 2 = 2800 Н осевая нагрузка, действующая на вал и воспринимаемая подшипником 1, Р = 600 Н диаметр вала под подшипником (1 = 40 частота вращения вала п = 630 мин нагрузка на подшипники с легкими толчками температура нагрева подшипников не превышает 70 °С долговечность подшипников = 25 ООО ч.  [c.320]

Нагревом охватывающей детали Ванны с кипящей водой Масляные ванны Газовые горелки Электрические устройства для нагрева методом сопротивления или индукции Температура 70—120° С 1 Температура 250—400° С Температура 150—200° С Посадка колец подшипников качения. Посадка крупных деталей (бандажных колец, венцовых шестерней)  [c.342]

Монтаж подшипников облегчается при использовании способа теплового воздействия. Если подшипник насаживается на вал с натягом, то его рекомендуется нагревать в масляной ванне до температуры 80—90° С. Нагрев облегчает сборку и предупреждает порчу поверхности шейки вала. Температура нагрева подшипника не должна превышать 100° С, в противном случае возможно ухудшение механических свойств металла колец и тел качения.  [c.466]

Сборка узлов подшипников качения. В конструкциях ПТМ подшипники качения соединяются с цапфами валов или осей обычно по посадкам Т , Яд, по системе отверстия. Посадка подшипников качения в корпус осуществляется по системе вала по посадкам Сп, Яп, Гп. Характер соединения подшипников качения определяется видом их нагружения и условиями работы. Перед посадкой подшипников на вал (ось) они должны быть нагреты в масляной ванне до температуры 80—100°С. Это позволяет свободно и правильно (без ударов и перекосов) соединять подшипник с валом. Масляные ванны оборудованы электрическим подогревом и приборами (термопарами) для измерения температуры масла. Чтобы избежать отпуска закаленных деталей подшипников, их нагревают до строго определенной температуры.  [c.118]

Резкая остановка двигателя после длительной работы увеличивает и без этого высокую температуру подшипников турбокомпрессора. Так, по данным НАМИ [63], при остановке турбокомпрессора, который работал с температурой перед соплами 705° С, температура наружного кольца подшипника качения увеличилась с 95 до 228° С. Поэтому при проектировании турбокомпрессоров необходимо особое внимание уделять защите подшипников от нагрева.  [c.111]

Собранный шпиндель должен вращаться легко и плавно. Шпиндель с гильзой, наружный диаметр которой пригнан по корпусу, устанавливают на место и обкатывают при режиме п = 300 об/мин — в течение 2 ч и гх = 2000 об/мин — в течение 30 мин. Максимально допустимая температура нагрева шпинделя 30 °С. При большем нагреве шпиндель необходимо разобрать, тщательно промыть все детали, проверить точность сопряжения подшипников качения, устранить замеченные недостатки, смазать маслом, вновь собрать, отрегулировать с проверкой предварительного натяга по М р = 0,5 Н-м.  [c.199]

Для него смазывают механизмы подъемников Во всех механизмах, блочных узлах подъемников вращающиеся валы и оси опираются на подшипники качения или скольжения. Во время вращения при непосредственном контакте между трущимися поверхностями вала и подшипника образуются силы трения, которые приводят к повышению температуры деталей и их износу. Для уменьшения трения, нагрева и износа трущиеся поверхности смазывают. Масло прилипает к поверхности деталей, разъединяя трущиеся поверхности, заменяя сухое трение металла о металл трением внутри масляного слоя. Коэффициент трения снижается, улучшаются и облегчаются условия работы деталей машины.  [c.156]

Д.ля электродвигателей с подшипниками качения применяют обычно смазку 1—13, которая может быть заменена консталинами УТ-1 и УТс-1 или солидолами УС-2 и УСс-2, если температура не превышает 50°. Срок службы смазки в подшипниках электродвигателей, работающих в 3 смены, до 6 месяцев, а в пыльных и влажных условиях 3—4 месяца. Перед заправкой подшипники разбираются, тщательно очищаются и промываются керосином, а в необходимых случаях авиабензином или нагретым до 90—100 индустриальным маслом. Затем производится сушка с продувкой сжатым воздухом. Корпус подшипника заполняется свежей смазкой не более чем на две трети его свободного объема во избежание нагрева при работе. Добавка смазки производится раз в 1—3 месяца через соответствующие приспособления или непосредственно через снятый фланец подшипника.  [c.195]

Термообработка наращенного слоя клея ускоряет отвердение и улучшает его прочностные свойства. Нагрев обычно ведется в электрической печи. Деталь после нанесения последнего слоя клея и выдержки при комнатной температуре помещают в сушильный шкаф и нагревают до необходимой температуры (см. табл. 2.4) (кроме подшипников качения и их колец, последние нагревают до 100—120 °С).  [c.88]

Посадка с подогревом целесообразна для насадки венца маховика при монтаже подшипников качения и др. При посадке с нагревом необходимо знать температуру, до которой надо нагреть охватывающую деталь или охладить охватываемую.  [c.415]

Основной ряд начальной осевой игры предназначается для подшипников, у которых температура нагрева внутреннего кольца может превышать температуру нагрева наружного кольца не более чем на 10 С при скоростях вращения, предусмотренных в действующих каталогах-справочниках на подшипники качения.  [c.20]

Для более нагруженных подшипников качения — шариковых и роликовых — солидолы не предназначены (особенно в тех случаях, когда эти подшипники могут периодически нагреваться до относительно высоких температур).  [c.87]

Продольный разрез рабочего цилиндра быстроходного червячного пресса приведен на фиг. 201. Крутящий момент передается червяку 5 клиноременной передачей через шпиндель 8, вращающийся на подшипниках качения. Осевые усилия, возникающие при экструзии, воспринимаются двумя радиально-упорными подшипниками 7. Перед запуском пресса обогреватель 2 нагревает головку 1. Для отвода избыточного тепла предусмотрена охлаждающая система 4. Вода подводится к штуцеру 3. Для питания пресса материалом предусмотрен вибропитатель 6. Температура экструзии для данной скорости вращения червяка и определенной дозировке перерабатываемого материала устанавливается регулированием давления (дросселированием) материала при выходе из цилиндра в головку. При вращении гайки 9 экструзионная головка 1 перемещается и изменяется зазор между концом червяка и деталью 10.  [c.258]

Перед установкой подшипников качения на вал в целях облегчения монтажа и во избежание порчи посадочных мест на валу все мелкие и средние подшипники при посадках от плотной до глухой и все крупногабаритные подшипники при любых посадках нагревают в минеральном масле, температура которого не должна превышать 100° С.  [c.266]

В опорах современных ГТД применяют подшипники качения, нередко ограничивающие надежность и ресурс работы. Подшипники роторов работают при значительных нагрузках, больших угловых скоростях и повышенных температурных режимах. Так, радиальные и осевые силы могут достигать на опорах, фиксирующих ротор от осевых перемещений величин порядка нескольких сотен даН, при окружной скорости на диаметре окружности центров шариков или роликов подшипника и л 60. .. 100 м/с, температура их нагрева составляет 200. .. 250 °С в нормальных условиях, достигая 350° и более при скорости полета М л 2,5. .. 3,0.  [c.199]

Повышение трения и температуры. Масло в авиационных двигателях подается на подшипники не только для их смазки, но и для охлаждения. Поэтому при недостаточной подаче масла или полном его прекращении детали подшипников быстро нагреваются, изменяются зазоры между телами качения и обоймами, в результате чего в подшипнике возникают повышенные усилия от трения. А все это в целом приводит к еш,е более сильному разогреву подшипника и дальнейшему уменьшению в них зазоров. В итоге температура в местах контактов шариков с кольцами повышается настолько, что превышает температуру плавления материала шариков. Расплавляющий материал налипает на беговую дорожку обойм и заклинивает шарики между внутренним и наружным кольцами.  [c.98]

На оснований этого отбор полей допусков из ГОСТ 25347—82 СТ СЭВ 144-—75) (табл. 10.7) для посадочных поверхностей валоз н отверстий корпусов, предназначенных для монтажа подшипников качения, выполнен при следующих условиях 1971 а) валы сплошные или полые тонкостенные (rf/rfn > 1,25, где d — диаметр отверстия подшипника — диаметр отверстия полого вала) б) материал валов — сгаль, а корпусов — сталь или чугун в) температура, до которой лодшипники нагреваются при работе, не превышает 100 С.  [c.225]

Сланцы, обработка В 28 D 1/32 Следящие устройства гидравлические и пневматические F 15 В звуколокационные G 01 S 15/66) Слеживаемость материалов при гранулировании, предотвращение В 01 J 2/30 Слесарные инструменты выпускные отверстия в разбрызгивателях В 05 В 1/36 Слитки (манипулирование ими при ковке В 21 J 13/10 отливка В 22 D 7/00-7/12, 9/00 печи для нагрева С 21 D 9/70 формы для отливки В 22 D 7/06) Слоистые [изделия В 32 В изготовление 31/(00-30) отличающиеся (использованными веществами 11/00-29/08 структурой 1/00-7/00) покрытия 33/00 ремонт. 35jOQ со слоями керамики, камня, огнеупорных материалов и т. п. 18/00) материалы радиоактивного излучения G 21 F 1/12 изготовление (из каучука В 29 D спеканием металлических порошков В 22 F 7/00-7/08) использование для упаковки В 65 D 65/40 пластические В 29 (L 9 00 изготовление D9/00))] Слюда (обработка В 28 D 1/32 слоистые изделия со слоями слюды В 32 В 19/00) Смазывание [F 16 вкладышей подшипников скольжения С 33/10 при высокой температуре N 17/02 гибких валов и тросов С 1/24 гидродинамических передач F1 41/30 графитовыми составами, водой или другими особыми материалами N 15/(00-04) дозаторы для смазочных систем N 27/(00-02) задвижек или шиберных затворов К 3/36 коленчатых валов С 3/14 кранов и клапанов К 5/22 муфт сцепления D 13/74 при низкой температуре N 17/04 окунанием или погружением N 7/28 передач Н 57/(04-05) поршней J 1/08 пружин F 1/24 разбрызгиванием N 7/26 фитильная N 7/12 централизованные системы N 7/38 — цепей Н 57/05 подшипников (качения С 33/66 скольжения С 33/10)) буке ж.-д. транспортных средств В 61 F 17/(00-36)]  [c.177]

Постоянный надзор за охлаждением водой корпусов подшипников дымососов и за их температурой значительно облегчается устройством сигнализации о предельно допустимой температуре. Следует также обеспечить хорошую изоляцию корпуса дымососа и при необходимости защитить близлежащие подшипники от нагрева (экранами или устройством душирующей вентиляции). В связи со значительной и непостоянной температурой шейки вала дымососа весьма важно правильно выбрать посадку на вал внутренней обоймы подшипника качения. О.хлаждение водой вала дымососа затруднено из-за необходимости установки сальн1П[c.208]

Аналогичное рассмотрение вопроса применительно к деталям, работающим при высоких контактных нагрузках (например, к подшипникам качения), приводит к выводу, что и здесь сквозное термическое упрочнение иа примерно одинаковую прочность не является обязательным. Необходимо лишь, чтобы толщина поверхностного слоя высокой твердости была не менее некоторой минимальной толщины. Зависящей от уровня рабочих контактных напряжений. Наличие напряжений сжатий в поверхностных слоях увеличивает контактную прочность и долговечаость работы деталей при высоких контактных напряжениях. Применение для термической обработки индукционного нагрева позволяет использовать еще одно его принципиальное преимущество. Вследствие высокой скорости нагрева и малой его длительности (при должном выборе его температуры) зерно аустекита в процессе аустенитизации не успевает вырасти в той мере, как это имеет место при нагреве в печи.  [c.243]

Режим предварительной термической обработки деталей подшипников качения из стали 20Х2Н4А включает в себя нормализацию с температурой нагрева 950—970° С и высокий отпуск с нагревом до температуры 630—660° С, а также выдержку 6—9 ч.  [c.190]

Установка подшипников качения облегчается при использовании метода теплового воздействия. Подшипник нагревают в масляной ванне в течение 15-20 мин и в горячем виде устанавливают на вал. При этом натяг уменьшается на величину Atad, где Д - разность температур подшипника и вала а - коэффициент линейного расширения, равный для стали 1,1 10" , и с/ - внутренний диаметр подшипника.  [c.835]

Монтаж прецизионных узлов с подшипниками качения в станкостроении имеет свою специфику. Шпиндельные узлы прецизионных координатно-расточ-ных станков мод. 2А420 и 2А430 монтируют на цилиндрических роликовых подшипниках собственного изготовления. Наружные кольца подшипников обрабатывают окончательно в сборе с гильзой, внутренние кольца — в сборе со шпинделем. При установке внутреннего кольца на шпиндель, а наружного в корпус исиользуют метод теплового воздействия внутреннее кольцо нагревают в масле при температуре 80° С, а наружное кольцо охлаждают в вихревой холодильной установке до температуры —50° С.  [c.659]

Опробование начинают продвиганием ходовой части иа 5— 10 м вручную или от электродвигателя. Затем в течение 3—4 ч проводят обкатку конвейера вхолостую. При этом конвейер должен работать плавно, без стуков, ударов и вибраций, зацепление пепи должно быть плавным, катки не должны набегать ребордами на рельсы, соседние пластины должны свободно без заедания проворачиваться на звездочках и криволинейных участках, катки должны вращаться на всем пути движения по рельсам. Температура нагрева редуктора и подшипников скольжения должна быть не выше 70° С, нагрев подшипников качения не должен иметь места.  [c.228]

В зависимости от вида производства, назначения, конструкции и габаритов детали нагрев выполняют в масляных ваннах, газовых печах, электропечах сопротивления, элек-троконтактных или индукционных установках. В масляных ваннах детали (обычно это подшипники качения) нагревают равномерно до температуры 120. .. 130 С. В печах и универсальных индукционных нагревателях выполняют нагрев разнотипных средне- и мелкогабаритных деталей. В крупносерийном и массовом производствах применяют специальные электроконтактные и индукционные нагреватели.  [c.148]

Описание технологии. Институтом Ho hs hule при предварительном нагреве деталей для сборки предложено применение устройств предва рительно-го скоростного индукционного нагрева охватывающих деталей и подшипников качения. Эти устройства предназначены для промышленной эксплуатации в механосборочном производстве машиностроительных и ремонтных предприятий. При их использовании обеспечивается быстрый рост температуры металлических охватывающих деталей (со скоростью более 250 С/мин, а среднегабаритных подшипников качения—до 400 С/мин), благодаря чему достигается их кратковременный и равномерный нагрев. Средний расход электроэнергии в таких устройствах при нагреве деталей массой до 40 кг составляет 0,7 кВт-ч, а до 100 кг — 2,5 кВт-ч.  [c.76]

Рабочий зазор, т. е. зазор в работающем подпшпнике, равняется посадочному зазору минус температурное изменение зазора и плюс контактные деформации тел качения и колец от радиальной нагрузки. Температурные изменения зазора возникают в связи с тем, что внутреннее кольцо нагревается, как ггравило, больше, чем наружное, и работает в условиях худшей теплоотдачи. Разница температур колец доходит до 5...10 °С, а для особо быстроходных подшипников и подшипников, работающих в условиях повышенного тепловыделения на валу (вал — червяк и т. п.),— еще больше.  [c.363]


mash-xxl.info

Греются тормозные диски: как исправить? » АвтоНоватор

Нормально работающие, исправные тормоза – они как огнетушитель. Мы их не замечаем, и не помним о них. Потом, вдруг, не дай Бог, происходит аварийная ситуация или необходимо экстренное торможение, и мы с удивлением, преходящим в панику, понимаем, что в автомобиле неисправные тормоза.

Высокая температура – норма работы тормозного диска

Поэтому, чтобы не предстать перед фактом ДТП во всей его красе, необходимо систематически самостоятельно производить диагностику тормозной системы: проверка уровня тормозной жидкости, соответствие тормозных колодок требованиям производителя и толщине тормозных дисков.

Факторов, приводящих к неисправности тормозной системы, вернее отдельных ее элементов, много. Давайте обратим внимание на перегрев тормозных дисков.

Чтобы вы понимали, о чем идет речь. К материалу тормозного диска предъявляются высокие требования, и в первую очередь – это прочность, высокий коэффициент трения и стабильные характеристики при нагреве, высокая теплопроводность, стойкость к резкому тепловому удару, низкая способность к адгезии.

Да, это все о нем – о тормозном диске серийного автомобиля. Ведь его  рабочая температура доходит до 200-300 градусов С. Поэтому основным материалом для тормозных дисков серийного автомобиля являются: сталь или чугун. Есть керамические тормозные диски со способностью нагрева почти до 1000 градусов, не склонные к деформации, карбоновые тормозные диски. Но, к серийному производству они пока неприменимы из-за высокой стоимости.

Важно! Перегрев тормозных дисков сводит к нулю эффективность тормозов, так как тормозные колодки в этом случае идут по тормозному диску «как по маслу».

Почему происходит перегрев тормозных дисков

Естественно-эксплуатационная причина. Трение – это основный принцип работы тормозной системы автомобиля, который в ближайшем будущем вряд ли измениться. В работе тормозной системы участвуют: тормозные диски и тормозные колодки. Процесс нагрева тормозного диска происходит в доли секунды во время торможения, а вот остывание затягивается.

С учетом того, что 80% времени мы движемся в городском цикле, то греются тормозные диски постоянно. А если ваш стиль движения является излишне агрессивным: разгон-торможение, то перегрев тормозных дисков вам стабильно обеспечен.

Неисправность тормозного механизма. Это менее распространенная причина, которая обеспечивает перегрев тормозных дисков. Ведь, если вы заинтересованы в своем безопасном движении, самостоятельная диагностика тормозной системы: проверка уровня тормозной жидкости, проверка исправности и толщины тормозных дисков и замена тормозных колодок – вами осуществляется систематически.

Тем не менее, нужно знать, что причинами перегрева тормозных дисков может послужить следующее:

  • толщина тормозных колодок ниже минимально допустимой, как правило, перегрев тормозных дисков происходит при злоупотреблении владельца количеством проточек тормозных дисков ;
  • тормозной диск покороблен;
  • качество тормозных колодок оставляет желать лучшего;
  • задние тормоза барабанного типа. Здесь всё просто. Более низкая эффективность барабанных тормозов приводит к тому, что основная нагрузка при торможении ложится на передние дисковые тормоза, поэтому и происходит перегрев тормозных дисков установленных на передней оси.

Как не допустить и исправить перегрев тормозных дисков

Исходя из перечисленных причин того, почему традиционно  греются тормозные диски, соответственно применяем и способы устранения перегрева. Своевременная замена тормозных дисков и тормозных колодок, установка качественных тормозных колодок и тормозных дисков, желательно применение на обеих осях дисковых тормозов, контролировать соответствие толщины тормозного диска установленным параметрам.

Информация к размышлению для автовладельцев

Постарайтесь, особенно в летнее время, избегать мойки автомобиля сразу же после движения. Греются тормозные диски мгновенно, а вот остывают чуть дольше, поэтому подъехав на мойку, дайте дискам время, чтобы остыть. Таким образом, вы сохраните тормозной диск от деформации. Ведь все помним школьный курс физики: резкий температурный удар нагрев-охлаждение приводит к деформации. Тормозной диск не исключение.

Сталь, как основной материал, из которого изготовлен тормозной диск, желтеет при t – 150-280 градусов С; синеет – при 300 – 450 градусов; чернеет – 450-500 градусов. Поэтому, визуальная диагностика состояния тормозных дисков поможет вам избежать неприятностей во время движения.

Удачи вам во время движения, и не допускайте перегрева тормозных дисков своего авто.

carnovato.ru

Тормозная система автомобиля: термины

ABS

Антиблокировочная система - система, предотвращающая блокировку колес транспортного средства при торможении. Основное предназначение системы состоит в том, чтобы уменьшить тормозной путь и обеспечить управляемость транспортного средства в процессе резкого торможения, и исключить вероятность его неконтролируемого скольжения.

Асбест

Асбест (греч. ἄσβεστος, буквально — неразрушимый) — название, относящееся к группе тонковолокнистых минералов из класса силикатов. Асбест обладает высокой огнестойкостью, поэтому применяется в составах и композициях, где необходимо сочетание гибкости и термостойкости.

Абразивное трение
Механическое трение материала тормозной колодки непосредственно о поверхность тормозного диска – трущаяся пара, приводящее к механическому износу, как колодки, так и диска.

Давление в тормозной магистрали
Моментальное гидравлическое давление в тормозной магистрали. Вычисляется как произведение силы, приложенной к педали тормоза, на соотношение плеч педали (плюс любое ее увеличение усилителем тормозов, где применимо) деленное на площадь поршня главного тормозного цилиндра. При равном усилии на педали, чем меньше площадь поршня ГТЦ и/или больше соотношение плеч педали, и/или помощь усилителя, тем выше давление в тормозной магистрали и больше ход педали тормоза.

Диск, ротор
Вращающаяся часть дисковой тормозной системы. Механически закрепленный на оси и, соответственно, вращающийся вместе с колесом и покрышкой, диск представляет собой движущуюся поверхность трения, в то время как колодки представляют собой неподвижную поверхность трения. За исключением применения в гоночных автомобилях, диски обычно изготавливаются из определенных марок литейного чугуна. Некоторые Европейские переднеприводные автомобили, задние тормоза которых нагружены по минимуму, используют в качестве материала задних тормозных дисков алюминиевые сплавы для экономии веса. Большинство профессиональных спортивных автомобилей используют карбоновые диски и колодки.
1. Цельный диск : диск, цельно отлитый с центральной частью. Наиболее дешевый способ производства диска и полностью адекватен при нормальном использовании. Для уменьшения коробления используются некоторые технологические хитрости.
2. Составной диск : является нормой для спортивных автомобилей, составной или же плавающий диск состоит из фрикционного диска механически соединенного с центральной частью при помощи зажимов либо болтами. При правильной конструкции такая система позволяет диску расширяться в радиальном направлении под действием тепла без коробления и обеспечивает небольшой люфт относительно оси вращения, значительно снижающий сопротивление.
3. Сплошной диск: диск, отлитый без внутренних полостей. Подходит для легких автомобилей, не требующих интенсивного торможения.
4. Вентилируемый диск: диск, отлитый с внутренними полостями, обеспечивающими охлаждение. Норма для спортивных, мощных и тяжелых автомобилей.

Карбон и карбоновые тормоза
Тормозные системы, в которых и ротор и колодки изготовлены из карбона. Применяются во всех гоночных сериях, где они не запрещены. Обеспечивают значительное снижение вращающихся масс и момента инерции ротора наряду со значительно более высокой теплоемкостью и стабильностью геометрических параметров в процессе использования. Недостатками указанных систем являются: более высокая стоимость, меньшая эффективность торможения до прогрева (особенно при влажной погоде), а также низкая информативность и, как следствие, – сложности в дозировании тормозных усилий. Несмотря на распространенное заблуждение, коэффициент трения у карбоновых тормозных пар ничуть не лучше, чем качественных металлокерамических колодок по чугунному ротору. Важным преимуществом для скоростных мотогонок является снижение гироскопической прецессии при входе в поворот.

Керамические колодки

Одна из последних разработок для серийных автомобилей. В узком смысле слово керамика обозначает глину, прошедшую обжиг. Однако современное использование этого термина расширяет его значение до включения всех неорганических неметаллических материалов. Так, в производстве фрикционных материалов, керамическую основу спрессовывают и спекают с металлической пудрой. В результате получается жаростостойкий материал, используемый для изготовления тормозных дисков и колодок. Предназначение таких колодок – от активной городской езды до раллийных и гоночних выступлений. Отличаются от органиических материалов эффективностью в более широком температурном диапазоне, практически не скрипят, при трении выбрасывают намного меньше пыли. Колодки, изготовленные по технологии керамического композита, живут на 20-40 % дольше обычной органики.

Коэффициент трения
Безразмерный коэффициент, характеризующий качество взаимодействия при трении одного материала о другой. Чем выше коэффициент, тем сильнее трение. Стандартные тормозные колодки легковых автомобилей имеют КТ в районе 0.3-0.4. Гоночные колодки – 0.5-0.6. Один и тот же фрикционный состав может показывать разные показатели КТ при разных температурах нагрева, поэтому характеристики, не указывающие при какой температуре проводилось измерение, достойны подозрения.

Липкое (вязкое) трение
Перенос тонкого слоя материала тормозной колодки, который приклеивается (налипает) к поверхности ротора. После того как слой материала колодки равномерно нанесен на поверхность диска, именно он трется о поверхность колодки. Формирующиеся внутренние связи между двумя слоями однородного материала разрушаются, переводя кинетическую энергию в тепловую, формируются и разрушаются, снова и снова.

Литейный чугун
Сплав железа, содержащий от 2% до 4.5% растворенного углерода (в отличие от стали, содержащей менее 2%). В силу низкой стоимости, относительной простоты обработки и тепловой стабильности литейный чугун (иногда также именуемый «серый чугун» из-за характерного цвета) является наиболее распространенным материалом для производства автомобильных тормозных дисков. Для обеспечения высоких эксплуатационных свойств, производство заготовок тормозных дисков должно тщательно контролироваться по химическому составу и режимам охлаждения, обеспечивая равномерную кристаллизацию избыточного углерода. Это позволяет снизить погрешности механической обработки, обеспечить износостойкость, снизить вибрации и предотвратить растрескивание в процессе использования.

Металлические колодки
Одна из последних разработок в сфере фрикционных материалов. Чаще всего одним из компонентов используют медь в порошковом виде. Порошок перемешивают с другими металлами (обычно оксидами алюминия) и неметаллами (графит или его аналог). Полученную смесь спекают под давлением и получают металлическую колодку. Такая колодка очень жесткая и прочная, со временем службы в три раза выше органических колодок! Сильной стороной колодки является высокая прочность, коэффициент трения в пределах 0.65-0.7, высокий температурный диапазон - до 750С, относительная устойчивость коэффициента трения. Недостаток колодки в её преимуществе - жесткости и высоком коэффициентом трения. Из-за высокой жесткости колодка не может использоваться на вариациях чугунных (штатных) дисках. Металлизированные синтетические колодки, требуют большей износоустойчивости, от ротора, чем может дать серый чугун. Поэтому использовать металлические материалы нужны только с дисками из усиленного материала.

Обкатка, прикатывание, врабатывание
По отношению к тормозным системам можно выделить два типа прикатывания:
1. Прикатывание фрикционного материала: Все фрикционные материалы содержат летучие вещества, используемые, как связующее. В начале эксплуатации, при тепловых нагрузках на колодку, эти вещества выпариваются из фрикционного материала, формируя газовую подушку между материалом колодки и поверхностью ротора. Прикатанную колодку можно определить по обесцвеченному слою фрикционного материала толщиной 1.5-3.0 мм.
2. Прикатывание ротора: Перед тем, как использовать новый ротор, с его поверхности необходимо удалить остатки машинного масла и консервантов, действуя в соответствии с инструкциями производителя. Обычно это включает мойку мыльными растворами или использование специальных составов для чистки/мойки тормозов. После этого ротор монтируется на место и проверяется на биение. Ротор должен быть прикатан серией умеренных торможений, перемежающихся паузами, достаточными для охлаждения, с постепенным увеличением интенсивности торможений до тех пор, пока вся поверхность ротора не будет равномерно обесцвечена (окрашена в цвета побежалости). Такой подход предотвращает тепловой шок, перекашивание и образование «горячих точек» (точечных отложений материала колодок, приводящее к остаточным изменениям чугуна ротора под ними) и обеспечивает максимальный срок эксплуатации ротора.


Органические колодки

Большинство «гражданских» колодок состоят именно из органических составов. Такая колодка содержит органический наполнитель. Обычно, это графит. Такая колодка - черного цвета. В качестве матрицы используется фенол - альдегидный полимер (пришел на смену асбесту), в качестве усилителя структуры - металлические или синтетические фибры (кевлар, бронза). По-большей мере, колодка наследует свои качества от графита - линейный коэффициент трения и температурный диапазон до 350-400 °С. Колодки, в состав которых входят некоторые подвиды органических смол, требуют начального прогрева для окончательного формирования (сопутствует запах). Будьте внимательны и не перегревайте органическую колодку первые 100км, иначе она может разрушиться.

Перфорированный диск (ротор)

Края перфорации на дисках постоянно очищают и освежают поверхность колодок, а также способствуют лучшему "закусыванию". Кроме того, они предотвращают скопление газов между колодками и поверхностью дисков. Перфорированные диски несколько легче обычных, поэтому лучше вращаются. Избежать деформации (растрескиваний) диска поможет исключительно эксплуатация роторов проверенных производителей, владеющих технологией

Подложка (тормозной колодки)
Стальная часть тормозной колодки дискового тормоза, которая взаимодействует с поршн(ем/ями) тормозного суппорта и к которой прикреплена фрикционная накладка. Подложка обеспечивает необходимые жесткость и прочность колодки. Ее размеры, плоскостность и состояние поверхности должны тщательно контролироваться. Чем длиннее колодка, тем толще должна быть подложка. Подложки толщиной менее 3мм должны вызывать подозрение, если только речь не идет об очень короткой колодке.

Поршни

Гидравлические плунжеры, передающие давление на колодки для обеспечения зажима вращающегося диска. Изготавливаются из алюминия, стали или титана и уплотняются по контуру в цилиндрах. Дизайн поршня критически важен. Трение колодок о диск стремится перекосить поршень в цилиндре и для обеспечения нормальной работы тормоза жизненно важно правильно рассчитать зазор между поршнем и цилиндром, учесть коэффициенты температурного расширения, подобрать материал и расположение уплотнений. К использованию поршней и уплотнений, отличающихся от рекомендованных производителем тормозной системы, надо подходить очень аккуратно.

Посинение
Обесцвечивание (окрашивание в цвета побежалости) чугунных роторов под действием температуры. Хотя окрашивание в цвета побежалости является свидетельством серьезной тепловой нагрузки, ведущей к уменьшению срока службы ротора, его проявление нормально при цикличных интенсивных торможениях и не может служить поводом для беспокойства.

Прикусывание, прихват
Скорость с которой фрикционный материал достигает максимального коэффициента трения при начале торможения. Величина прихвата всегда компромисс. Слишком быстрый прихват усложняет дозирование замедления на начальном этапе торможения. Слишком медленный – ведет к задержкам в торможении. Предпочтения гонщиков по уровню прихвата колодок разнятся и индивидуальны.

Прокачка
Процесс удаления из гидравлической системы имеющейся жидкости с одновременной заменой ее на свежую. Прокачка, обычно, применяется для смены перегретой жидкости и/или удаления пузырьков воздуха из контур(а/ов) гидравлической системы после интенсивного использования, но должна также проводиться и регулярно в связи с гигроскопичностью тормозной жидкости (склонностью к насыщению водой с течением времени).

Противоскрипные накладки
Тонкие пластины из жесткого металла или композитных материалов, иногда с покрытием из высокотемпературной твердой смазки, располагаемые между подложкой тормозной колодки и поршнем тормозного суппорта для уменьшения или устранения скрипа тормозов. Обычно комплект состоит из перфорированной накладки, на которую наносится смазкой и надеваемой на нее крышкой - сплошной накладки на защелке. Накладка выполняет роль посредника между поршнями и колодкой.


Распределение тормозных усилий
Термин, используемый для обозначения соотношения между тормозным моментом, прилагаемым к передним тормозам, по сравнению с таковым же, прилагаемым к задним. Обычно выражается в процентах от общего тормозного момента. Например – «60% перед»

Теплопроводность
Теплопроводностью называется способность материала проводить тепло. Теплопередача происходит в результате перепада температур между поверхностями, ограничивающими материал. Например, часть тепла, образующегося при торможении, передается поршням и через них тормозной жидкости путем теплопроводности. Часть его передается на ступицу, подшипники поворотного кулака и колесо тем же самым способом. Составные (или же плавающие) роторы снижают передачу тепла на ступицу и другие части благодаря тому, что колокол (или шляпа – центральная часть составного ротора) работает как теплоизолятор. Во всех конструкциях теплопроводность используется как способ отвода тепла от места взаимодействия диск/колодки к лопастям (перегородкам в вентилируемых полостях диска).

Тормозной момент
Тормозной момент для конкретного колеса это произведение эффективного радиуса ротора на сжимающую силу и на коэффициент трения между колодкой и ротором. Тормозной момент и есть та сила, которая замедляет колесо и покрышку. Увеличение силы давления суппорта, так же, как и увеличение эффективного радиуса приводят к увеличению крутящего момента при торможении. Увеличение площади тормозной колодки не приводит к увеличению тормозного момента.

Тормозной суппорт
Часть дисковой тормозной системы – «гидравлический зажим». Изготовленный из стали или цветных металлов и жестко закрепленный на поворотном кулаке, суппорт удерживает на месте колодки и прижимает их к вращающейся поверхности ротора силой поршней, приводимых в действие главным тормозным цилиндром, при нажатии на педаль тормоза.

Усилитель тормозов
Вакуумное вспомогательное устройство, увеличивающее силу, прикладываемую к педали тормоза. В ряде случаев данное усиление сопровождается увеличением хода педали и снижением ее жесткости. Тем не менее, в связи с компактностью и эффективностью, используется практически на всех легковых автомобилях.

Эффективность торможения
Соотношение реального замедления, достигаемого на конкретной поверхности, к теоретическому максимуму.

tormozi.ua

Пока нет комментариев.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

СайдбарКомментарии (0)