Перейти к контенту

Единицы измерения крутящего момента – Единицы измерения крутящего момента

Содержание

Перевод единиц измерения Крутящего момента. Единицы момента силы, единицы вращательного момента, единицы вертящего момента, единицы вращающего момента. Таблица.


Техническая информация тут
  • Перевод единиц измерения величин
  • Таблицы числовых значений
  • Алфавиты, номиналы, единицы тут
  • Математический справочник
  • Физический справочник
  • Химический справочник
  • Материалы
  • Рабочие среды
  • Оборудование
  • Инженерное ремесло
  • Инженерные системы
  • Технологии и чертежи
  • Личная жизнь инженеров
  • Калькуляторы
  • Поиск на сайте DPVAПоставщики оборудованияПолезные ссылкиО проектеОбратная связьОтветы на вопросы.Оглавление


    Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Алфавиты, номиналы, единицы / / Перевод единиц измерения величин. Перевод единиц измерения физических величин. Таблицы перевода единиц величин. Перевод химических и технических единиц измерения величин. Величины измерения. Таблицы соответствия величин.
     / / Перевод единиц измерения Крутящего момента. Единицы момента силы, единицы вращательного момента, единицы вертящего момента, единицы вращающего момента. Таблица.
    ]]>

    Таблица перевода единиц измерения величин крутящего момента. Единицы момента силы, единицы вращательного момента, единицы вертящего момента, единицы вращающего момента.

    Таблица перевода единиц измерения крутящего момента.
    Перевести из: Перевести в:

    Н*м

    Н*см

    Н*мм

    кН*м

    Дин*м

    Дин*см

    Дин*мм

    кгс*м

    кгс*см

    кгс*мм

    гс*м

    гс*см

    гс*мм

    (Унция силы)*фут

    (Унция силы)*дюйм

    (Фунт силы)*фут

    (Фунт силы)*дюйм

    Н*м (единица СИ) это:

    1

    102

    103

    10-3

    105

    dpva.ru

    Калькулятор Крутящий момент | Преобразование единиц крутящего момента

    Крутящий момент, момент силы - направленность сил на осуществление поворота объекта вокруг оси или точки опоры. В математике крутящий момент определяется как векторное производное расстояния и силы, которой свойственно производить вращение. Проще говоря, крутящий момент — это мера силы вращения объекта, такого как маховик или болт. Как правило, символ — греческая буква Тау (Т) или иногда обозначается буквой «М», от слова «момент». Единицей СИ для крутящего момента является ньютон-метр (Н•м). Единицы фунт-сила-фут, фунт-сила-дюйм и унция-сила-фут также используются для крутящего момента. Для всех этих величин слово «сила» часто выпадает, к примеру, фунт-сила-дюйм сокращается до «фунт-дюйм».

    Конвертер крутящего момента

    Переводим из

    Переводим в

    Основные единицы
    Килоньютон на метркН·м
    Ньютон на метрН·м
    Фунт-Сила-Дюймlbf∙in
    Другие единицы
    Дина-сантиметрдин·см
    Дина-Метрдин·м
    Дина-Миллиметрдин·мм
    Грамм-Сила-Сантиметргс·см
    Грамм-Сила-Метргс·м
    Грамм-Сила-Миллиметргс·мм
    Килограмм-Сила-Сантиметркгс∙см
    Килограмм-Сила-Метркгс∙м
    Килограмм-Сила-Миллиметркгс∙мм
    Ньютон сантиметрН∙cм
    Ньютон-МиллиметрН∙мм
    Унция-Сила-Дюймozf∙in
    Основные единицы
    Килоньютон на метркН·м
    Ньютон на метрН·м
    Фунт-Сила-Дюймlbf∙in
    Другие единицы
    Дина-сантиметрдин·см
    Дина-Метрдин·м
    Дина-Миллиметрдин·мм
    Грамм-Сила-Сантиметргс·см
    Грамм-Сила-Метргс·м
    Грамм-Сила-Миллиметргс·мм
    Килограмм-Сила-Сантиметркгс∙см
    Килограмм-Сила-Метркгс∙м
    Килограмм-Сила-Миллиметркгс∙мм
    Ньютон сантиметрН∙cм
    Ньютон-МиллиметрН∙мм
    Унция-Сила-Дюймozf∙in

    Результат конвертации:

    kalkulator.pro

    Единицы измерения крутящего момента двигателей

    В технических характеристиках двигателей и конструкций, оснащенных двигателями, постоянно фигурирует загадочный показатель нм, как единица измерения крутящего момента. Если с мощностью в лошадиных силах все понятно даже на интуитивном уровне, лошадь – она и есть лошадь, то здесь могут возникнуть некоторые затруднения.

    Архимедов рычаг

    Широко известный ученый Архимед как-то изрек знаменитую фразу: «Дайте мне рычаг, и я переверну Землю». Можно сказать, что именно эта фраза и послужила началом рождения показателя единицы измерения крутящего момента. Как известно, планета Земля несколько тяжеловата для того, чтобы человек, даже такой уважаемый и известный, как Архимед, мог ее перевернуть. Ключ – это использование рычага, позволяющего на порядки увеличивать силу воздействия на объект. Рычаг представляет собой фактически любой предмет, способный свободно вращаться вокруг точки опоры. Если точка опоры находится ровно в середине рычага, при приложении одинаковых усилий с каждого конца рычага вся конструкция будет стоять на месте. Ситуация изменится лишь при смещении точки опоры в одну из сторон. Лучше всего это видно на приведенном ниже рисунке.

    Оно крутится

    Как видно, рычаг крутится вокруг точки опоры, совершая неполный оборот. Соотношение прикладываемой силы к длинному плечу рычага и получаемого усилия на коротком плече составляет основу единиц измерения крутящего момента. Соотношение это очень простое: усилия, помноженные на длину соответствующего плеча рычага, должны быть равны. Закон сохранения энергии работает всегда. Этот принцип действия можно распространить и на пару шестеренок разного диаметра, и вообще на любые взаимодействующие при помощи вращения агрегаты механизмов разных диаметров, представляющие собой, по сути, плечи условных рычагов.

    Крутящий момент

    Теперь можно взять вращающийся вал двигателя. Радиус вала двигателя – это условный рычаг, а при его вращении возникает сила, направленная перпендикулярно к оси вращения. Схематично это показано на следующем рисунке.

    Здесь R – это радиус вала, а F – вектор силы, образуемой при вращении вала. Как и при обычном рычаге, их произведение (R*F) и будет моментом силы, или крутящим моментом. Поскольку, в соответствии с международной системой единиц, сила измеряется в ньютонах, а расстояние – в метрах, единицей измерения крутящего момента является ньютон-метр, или сокращенно – нм.

    Однако имеются и другие обозначения. Иногда для измерения силы используют не ньютоны, а килограммы (кгс), тогда эту величину можно пересчитать в «классику» при помощи коэффициента. 1 кгс на метр равен 9,81 нм. В странах, не использующих метрическую систему, в качестве единицы измерения крутящего момента электродвигателя применяют фунтофут. Звучит непривычно, но тем не менее. 1 фунтофут равен 1,36 нм. Существует зависимость между мощностью, частотой оборотов и создаваемым крутящим моментом. Она очень простая. Мощность равна произведению частоты оборотов на крутящий момент, деленную на коэффициент. Коэффициент зависит от единиц измерения крутящего момента и других указанных величин.

    Если речь идет о лошадиных силах, кгс на метр и оборотах в минуту, этот коэффициент равен 716,2, для нм и киловатт – 9549. В открытом доступе имеются соответствующие калькуляторы. В технических характеристиках обычно указывают крутящий момент, измеренный непосредственно на валу двигателя.

    fb.ru

    Online Unit Converters • Механика • Конвертер момента силы • Компактный калькулятор

    Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

    Двутавровые балки в конструкции здания

    Общие сведения

    Терминология в английском языке

    Примеры момента силы

    Заключение

    Общие сведения

    Момент силы — это физическая величина, характеризующая насколько сила, приложенная к телу, вызывает вращение тела вокруг оси. В английском и некоторых других языках это явление называют разными словами, в зависимости от контекста. Поскольку эта статья написана для сайта переводчиков, мы немного поговорим о терминологии в других языках. Величина момента силы равна векторному произведению силы, приложенной к телу на вычисленное по перпендикуляру расстояние между осью вращения и точкой приложения силы, которая вызывает вращение. В английском языке для момента силы используют два термина, момент силы (moment of force) и отдельный термин, torque. Английский термин torque используют для обозначения физической величины, которую измеряют так же, как и момент силы (в английском), но только в контексте, в котором сила, ответственная за это свойство, обязательно вызывает вращение тела. Эту величину также измеряют, умножив силу на расстояние между осью вращения и точкой приложения силы. В русском языке термину «torque» соответствуют термины «вращающий момент» и «вращательный момент», которые являются синонимами. Русский термин «крутящий момент» относится к внутренним усилиям, возникающим в объектах под действием приложенных к ним нагрузок. Этому термину соответствуют английские термины «torsional movement», «torque effect», «torsional shear» и некоторые другие.

    Вращающий момент (torque в английской терминологии) — результат приложения двух сил, которые рука прилагает к отвертке, а отвертка, в свою очередь — к головке винта

    Как уже упоминалось выше, в этой статье мы уделяем много внимания контексту, в котором используется тот или иной английский термин. Наша задача — объяснить разницу, чтобы помочь читателю, если он в будущем столкнется с этими терминами в английском тексте. Самое главное, что следует помнить — оба термина, момент силы и torque, используют для одной и той же физической величины, но в разных контекстах. Во многих языках, как и в русском, используют только один термин. Ниже рассмотрим в каком же контексте используют каждый из этих терминов.

    Терминология в английском языке

    Как мы уже упоминали выше, английские термины «момент силы» и «torque» используют для одного и того же понятия, но в разных контекстах. В этом разделе обсудим, когда в английском наиболее часто используют термин «момент силы» и почти не используют «torque». Часто о понятии «torque» говорят в контексте, когда сила, действующая на тело вызывает изменение углового ускорения тела. С другой стороны, когда в английском языке говорят о моменте силы, то сила, действующая на тело не обязательно вызывает такое ускорение. То есть, «torque» — это частный пример момента силы, но не наоборот. Можно также сказать, что «torque» — это момент силы, но момент силы — не «torque».

    Ниже рассмотрим несколько примеров. Стоит еще раз напомнить, что разница в использовании этих двух терминов зависит от контекста, но используют их для одного и того же физического явления. Нередко оба эти термина используют попеременно.

    На вороток действует пара сил от рук, в результате чего возникает вращающий момент, (по-английски torque).

    Чтобы понять, что такое момент силы, рассмотрим вначале, что такое момент в общем. Момент — это интенсивность, с которой сила действует на тело на определенном расстоянии относительно тела. Величина момента силы зависит от величины силы, которая действует на тело, и от расстояния от точки приложения силы до точки на теле. Как мы увидели из определения выше, эта точка часто находится на оси вращения.

    Момент силы пропорционален силе и радиусу. Это значит, что если сила приложена к телу на определенном расстоянии от оси вращения, то вращательное действие этой силы умножается на радиус, то есть чем дальше от оси вращения приложена сила, тем более вращающее действие она оказывает на тело. Это принцип используется в системах рычагов, шестерней и блоков, чтобы получить выигрыш в силе. В этом контексте чаще всего говорят о моменте силы и о его использовании в различных системах, например в системах рычагов. Примеры работы рычагов показаны в статье «Подробнее о вращающем моменте». Стоит заметить, что в этой статье мы в основном обсуждаем вращающий момент, что соответствует английскому термину «torque».

    Изгибающий момент. В данной ситуации нет кручения, поэтому здесь лучше говорить о моменте силы, а не о вращающем моменте.

    Иногда понятия момент силы и вращающий момент различают с помощью понятия «пары сил». Пара сил — это две силы одинаковой величины, действующие в противоположном направлении. Эти силы вызывают вращение тела, и их векторная сумма равна нулю. То есть, термин «момент силы» используют в более общем контексте, чем вращающий момент.

    В некоторых случаях термин «вращающий момент» используют, когда тело вращается, в то время как термин «момент силы» используют, когда тело не вращается, например, если речь идет об опорных балках и других конструктивных элементах зданий в строительстве. В таких системах концы балки либо жестко закреплены (жесткая заделка), либо крепление позволяет балке вращаться. Во втором случае говорят, что эта балка закреплена на шарнирной опоре. Если на эту балку действует сила, например, перпендикулярно ее поверхности, то в результате образуется момент силы. Если балка не фиксирована, а прикреплена на шарнирной опоре, то она свободно движется в ответ на действующие на нее силы. Если же балка фиксирована, то в противодействие моменту силы образуется другой момент, известный как изгибающий момент. Как видно из этого примера, термины момент силы и вращающий момент различаются тем, что момент силы не обязательно изменяет угловое ускорение. В этом примере угловое ускорение не изменяется потому, что силам извне, действующим на балку, противодействуют внутренние силы.

    Примеры момента силы

    Здесь момент силы каждого ребенка равен весу этого ребенка, умноженному на его расстояние от оси вращения. Девочка сидит ближе к точке опоры, но прилагает больше силы к качелям, чем мальчик, поэтому качели — в равновесии.

    Хороший пример момента силы в быту — это действие на тело одновременно момента силы и изгибающего момента, о котором мы говорили выше. Момент силы часто используют в строительстве и в проектировании строительных конструкций, так как, зная момент силы, можно определить нагрузку, которую должна выдержать эта конструкция. Нагрузка включает нагрузку от собственного веса, нагрузку, вызванную внешними воздействиями (ветром, снегом, дождем, и так далее), нагрузку от мебели и нагрузку, вызванную посетителями и обитателями здания (их вес). Нагрузка, вызванная людьми и интерьером, называется в строительстве полезной нагрузкой, а нагрузка, вызванная весом самого здания и окружающей средой называется статической или постоянной нагрузкой.

    При постройке в 1900 году моста Александры через реку Оттава использовано много двутавровых балок

    Если на балку или другой конструктивный элемент действует сила, то в ответ на эту силу возникает изгибающий момент, под действием которого некоторые части этой балки сжимаются, в то время как другие, наоборот, растягиваются. Представим, к примеру, балку, на которую действует сила, направленная вниз и приложенная по центру. Под воздействием этой силы балка принимает вогнутую форму. Верхняя часть балки, на которую действует сила, сжимается под воздействием этой силы, в то время как нижняя, наоборот, растягивается. Если нагрузка больше, чем этот материал может выдержать, то балка разрушается.

    Наибольшая нагрузка — на самый верхний и самый нижний слои балки, поэтому в строительстве и при проектировании сооружений эти слои часто укрепляют. Хороший пример — использование двутавровых конструкций. Двутавр — конструктивный элемент с поперечным сечением в форме буквы Н или латинской буквы “I” с верхней и нижней засечками (поэтому английском языке используют термин I-beam, Такая форма очень экономична, так как она позволяет упрочнить самые слабые части балки, используя при этом наименьшее количество материала. Чаще всего двутавровые балки сделаны из стали, но для прочной балки двутавровой конструкции вполне можно использовать и другие материалы. На YouTube можно найти видеосюжеты испытания двутавровых балок, сделанных из материалов, менее прочных, чем сталь, например из пенопласта и фанеры (нужно искать plywood beam test). Двутавровые балки из фанеры и древесностружечных плит появились на российском рынке стройматериалов относительно недавно, хотя они давно и очень широко применяются при строительстве каркасных домов в Северной Америке.

    Если на конструкцию действует изгибающий момент, то двутавровые балки — решение проблем, связанных с прочностью. Двутавровые балки также используют в конструкциях, которые подвергаются напряжению сдвига. Края двутавровой балки противодействуют изгибающему моменту, в то время как центральная опора противостоит напряжению сдвига. Несмотря на ее достоинства, двутавровая балка не может противостоять крутящим нагрузкам. Чтобы уменьшить эту нагрузку на поверхность конструкции, ее делают круглой и полируют поверхность, чтобы предотвратить скопление нагрузки в точках с неровной поверхностью. Увеличение диаметра и изготовление такой конструкции полой внутри может помочь уменьшить ее вес.

    Турбовинтовые двигатели с воздушными винтами создают крутящий момент, который действует на фюзеляж этого турбовинтового самолета; по-английски в данном случае могут говорить о моменте силы (moment of force) или о возникновении напряжения при кручении (torsional stress), так как вращение отсутствует

    Заключение

    В это статье мы рассмотрели, чем отличаются термины «момент силы» и «вращающий момент», а также английские термины «moment of force» и «torque», и увидели несколько примеров момента силы. В основном мы говорили о случаях, когда момент силы создает проблемы в строительстве, но часто бывает наоборот и момент силы приносит пользу. Примеры использования момента силы на практике — в статье «Подробнее о вращающем моменте». Стоит также упомянуть, что разница в терминологии в английском языке чаще всего значительна в американском и британском машиностроении и строительстве, в то время как в физике эти термины часто взаимозаменяемы.

    Литература

    Автор статьи: Kateryna Yuri

    Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

    www.translatorscafe.com

    Вращающий момент - это... Что такое Вращающий момент?

    Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент) — физическая величина, характеризующая вращательное действие силы на твёрдое тело.

    Момент силы приложенный к гаечному ключу

    Отношение между векторами силы, момента силы и импульса во вращающейся системе

    Момент силы

    В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр, хотя сантиньютон-метр (cN•m), футо-фунт (ft•lbf), дюйм-фунт (lbf•in) и дюйм-унция (ozf•in) также часто используются для выражения момента силы. Символ момента силы τ (тау). Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. Вращающиеся аналоги силы, массы и ускорения есть момент силы, момент инерции и угловое ускорение соответственно. Сила, приложенная к рычагу, умноженная на расстояние до оси рычага, есть момент силы. Например, сила в 3 ньютона, приложенная к рычагу, расстояние до оси которого 2 метра, это то же самое, что 1 ньютон, приложенный к рычагу, расстояние до оси которого 6 метров. Более точно, момент силы частицы определяется как векторное произведение:

    где  — сила, действующая на частицу, а  — радиус-вектор частицы!

    Предыстория

    Строго говоря, вектор, обозначающий момент сил, введен искуственно, так как является удобным при вычислении работы по криволинейному участку относительно неподвижной оси и удобен при вычислении общего момента сил всей системы, так как может суммироваться. Для того, чтобы понять откуда появилось обозначение момента сил и как до него додумались, стоит рассмотреть действие силы на рычаг, относительно неподвижной оси.

    Работа, совершаемая при действии силы на рычаг , совершающего вращательное движение вокруг неподвижной оси, может быть рассчитана исходя из следующих соображений.

    Пусть под действием этой силы конец рычага смещается на бесконечно малый отрезок , которому соответствует бесконечно малый угол . Обозначим через вектор, который направлен вдоль бесконечно малого отрезка и равен ему по модулю. Угол между вектором силы и вектором равен , а угол и вектором силы .

    Следовательно, бесконечно малая работа , совершаемая силой на бесконечно малом участке равна скалярному произведению вектора и вектора силы, то есть .

    Теперь попытаемся выразить модуль вектора через радиус вектор , а проекцию вектора силы на вектор , через угол .

    В первом случае, используя теорему Пифагора, можно записать следующее равенство , где в случае малого угла справедливо и следовательно


    Для проекции вектора силы на вектор , видно, что угол , так как для бесконечно малого перемещения рычага , можно считать, что траектория перемещения перпендикулярна рычагу , а так как , получаем, что .

    Теперь запишем бесконечно малую работу через новые равенства или .

    Теперь видно, что произведение есть ни что иное как модуль векторного произведения векторов и , то есть , которое и было принято обозначить за момент силы или модуля вектора момента силы .

    И теперь полная работа записывается очень просто или .

    Единицы

    Момент силы имеет размерность сила на расстояние, и в системе СИ единицей момента силы является «ньютон-метр». Джоуль, единица СИ для энергии и работы, тоже определяется как 1Н*м, но эта единица не используется для момента силы. Когда энергия представляется как результат «сила на расстояние», энергия скалярная, тогда как момент силы — это «сила, векторно умноженная на расстояние» и таким образом она (псевдо) векторная величина. Конечно, совпадение размерности этих величин не простое совпадение; момент силы 1Н*м, приложенный через целый оборот, требует энергии как раз 2*π джоулей. Математически

    ,

    где Е — энергия, τ — вращающий момент, θ — угол в радианах.

    Специальные случаи

    Формула момента рычага

    Момент рычага

    Очень интересен особый случай, представляемый как определение момента силы в поле:

    τ = МОМЕНТ РЫЧАГА * СИЛУ

    Проблема такого представления в том, что оно не дает направления момента силы, а только его величину, поэтому трудно рассматривать в.м. в 3-хмерном случае. Если сила перпендикулярна вектору r, момент рычага будет равен расстоянию до центра и момент силы будет максимален

    = РАССТОЯНИЕ ДО ЦЕНТРА * СИЛУ

    Сила под углом

    Если сила F направлена под углом θ к рычагу r, то τ = r*F*sinθ, где θ это угол между рычагом и приложенной силой

    Статическое равновесие

    Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для 2-хмерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0, ΣV=0 и момент силы в третьем измерении Στ=0.

    Момент силы как функция от времени

    Момент силы — производная по времени от момент импульса,

    ,

    где L — момент импульса. Момент импульса твердого тела может быть описан через произведение момента инерции и угловой скорости.

    ,

    То есть если I постоянная, то

    ,

    где α — угловое ускорение, измеряемое в радианах в секунду за секунду.

    Отношение между моментом силы и мощностью

    Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работу. Также если момент силы совершает действие через угловое расстояние, он совершает работу.

    = МОМЕНТ СИЛЫ * УГЛОВАЯ СКОРОСТЬ

    В системе СИ мощность измеряется в Ваттах, момент силы в ньютон-метрах, а УГЛОВАЯ СКОРОСТЬ в радианах в секунду.

    Отношение между моментом силы и работой

    = МОМЕНТ СИЛЫ * УГОЛ

    В системе СИ работа измеряется в Джоулях, момент силы в Ньютон * метр, а УГОЛ в в радианах.

    Обычно известна угловая скорость в радианах в секунду и время действия МОМЕНТА .

    Тогда совершенная МОМЕНТОМ силы РАБОТА рассчитывается как:

    = МОМЕНТ СИЛЫ * *

    Момент силы относительно точки

    Если имеется материальная точка , к которой приложена сила , то момент силы относительно точки равен векторному произведению радиус-вектора , соединяющий точки O и OF, на вектор силы :

    .

    Момент силы относительно оси

    Моментом силы относительно оси называется момент проекции силы на плоскость, перпендикулярную оси относительно точки пересечения оси с этой плоскостью.

    Единицы измерения

    Момент силы измеряется в ньютон-метрах. 1 Н•м — момент силы, который производит сила 1 Н на рычаг длиной 1 м.

    Измерение момента

    На сегодняшний день измерение момента силы осуществляется с помощью тензометрических, оптических и индуктивных датчиков нагрузки. В России при решении задач измерения момента в основном используется оборудование зарубежных производителей (HBM (Германия), Kyowa (Япония), Dacell (Корея) и ряда других).

    См. также

    Wikimedia Foundation. 2010.

    dic.academic.ru

    определения, единица измерения, примеры, относительно оси и точки

    В статье мы расскажем про момент силы относительно точки и оси, определения, рисунки и графики, какая единица измерения момента силы, работа и сила во вращательном движении, а также примеры и задачи.

    Момент силы представляет собой вектор физической величины, равный произведению векторов плеча силы (радиус-вектор частицы) и силы, действующей на точку. Силовой рычаг представляет собой вектор, соединяющий точку, через которую проходит ось вращения твердого тела с точкой, к которой приложена сила.

    где: r — плечо силы, F — сила приложенная на тело. 

    Направление вектора силы момента всегда перпендикулярно плоскости, определяемой векторами r и F.

    Главный момент — любая система сил на плоскости относительно принятого полюса называется алгебраическим моментом момента всех сил этой системы относительно этого полюса.

    Во вращательных движениях важны не только сами физические величины, но и то, как они расположены относительно оси вращения, то есть их моменты. Мы уже знаем, что во вращательном движении важна не только масса, но и момент инерции. В случае силы, ее эффективность для запуска ускорения определяется способом приложения этой силы к оси вращения.

    Взаимосвязь между силой и способом ее применения описывает МОМЕНТ СИЛЫ. Момент силы — это векторное произведение силового плеча R на вектор силы F:

    Как в каждом векторном произведении, так и здесь


    Следовательно, сила не будет влиять на вращение, когда угол между векторами силы F и рычагом R равен 0o или 180o. Каков эффект применения момента силы М?

    Мы используем второй Закон движения Ньютона и связь между канатом и угловой скоростью v = Rω в скалярной форме, действительны, когда векторы R и ω перпендикулярны друг другу

    Умножив обе части уравнения на R, получим

    Поскольку mR 2 = I, мы заключаем, что

    Вышеуказанная зависимость справедлива и для случая материального тела. Обратите внимание, что в то время как внешняя сила дает линейное ускорение a, момент внешней силы дает угловое ускорение ε.


    Единица измерения момента силы

    Основной мерой измерения момента силы в системной координате СИ является: [M]=Н•м

    В СГС: [M]=дин•см

    Работа и сила во вращательном движении

    Работа в линейном движении определяется общим выражением,

    но во вращательном движении,

    а следовательно

    Исходя из свойств смешанного произведения трех векторов, можно записать

    Поэтому мы получили выражение для работы во вращательном движении:

    Мощность во вращательном движении:

    Момент силы пример и решение задач относительно точки

    Найдите момент силы, действующей на тело в ситуациях, показанных на рисунках ниже. Предположим, что r = 1m и F = 2N.

    а) поскольку угол между векторами r и F равен 90°, то sin(a)=1: 

    M = r • F = 1м • 2N = 2Н • м 

    б) потому что угол между векторами r и F равен 0°, поэтому sin(a)=0: 

    M = 0 
    да направленная сила не может дать точке вращательное движение

    c)    поскольку угол между векторами r и F равен 30°, то sin(a)=0.5: 

    M = 0,5 r • F = 1Н • м. 

    Таким образом, направленная сила вызовет вращение тела, однако ее эффект будет меньше, чем в случае a).

    Момент силы относительно оси

    Предположим, что данные являются точкой O (полюс) и мощность P. В точке O мы принимаем начало прямоугольной системы координат. Момент силы Р по отношению к полюсным O представляет собой вектор М из (Р), (рисунок ниже).

    Любая точка A на линии P имеет координаты (xo , yo , zo ). 
    Вектор силы P имеет координаты Px , Py, PzКомбинируя точку A (xo, yo, zo ) с началом системы, мы получаем вектор p. Координаты вектора силы P относительно полюса O обозначены символами Mx, My, Mz. Эти координаты могут быть вычислены как минимумы данного определителя, где ( i, j, k) — единичные векторы на осях координат (варианты): i, j, k

    После решения определителя координаты момента будут равны:

    Координаты вектора моментов Mo (P) называются моментами силы относительно соответствующей оси. Например, момент силы P относительно оси Oz окружает шаблон:

    Mz = Pyxo — Pxyo


    Этот паттерн интерпретируется геометрически так, как показано на рисунке ниже. 

    На основании этой интерпретации момент силы относительно оси Oz можно определить, как момент проекции силы P на перпендикуляр оси Oz относительно точки проникновения этой плоскости осью. Проекция силы P на перпендикуляр оси обозначена Pxy, а точка проникновения плоскости Oxy — осью   символом O.
    Из приведенного выше определения момента силы относительно оси следует, что момент силы относительно оси равен нулю, когда сила и ось равны, в одной плоскости (когда сила параллельна оси или когда сила пересекает ось). 
    Используя формулы на Mx, My, Mz, мы можем рассчитать значение момента силы P относительно точки O и определить углы, содержащиеся между вектором M и осями системы:

    Если сила лежит в плоскости Oxy, то zo = 0 и Pz = 0 (см. Рисунок ниже).

    Момент силы P по отношению к точке (полюсу) O составляет: 
    Mx = 0, 
    My = 0, 
    Mo (P) = Mz = Pyxo — Pxyo.

    Метка крутящего момента: 
    плюс (+) — вращение силы вокруг оси O по часовой стрелке, 
    минус (-) — вращение силы вокруг оси O против часовой стрелки.

    meanders.ru

    Крутящий момент Википедия

    Момент силы, приложенный к гаечному ключу. Направлен от зрителя

    Моме́нт си́лы (синонимы: кру́тящий момент, враща́тельный момент, вертя́щий момент, враща́ющий момент) — векторная физическая величина, равная векторному произведению вектора силы и радиус-вектора, проведённого от оси вращения к точке приложения этой силы. Характеризует вращательное действие силы на твёрдое тело.

    Понятия «вращающий» и «крутящий» моменты в общем случае не тождественны, так как в технике понятие «вращающий» момент рассматривается как внешнее усилие, прикладываемое к объекту, а «крутящий» — внутреннее усилие, возникающее в объекте под действием приложенных нагрузок (этим понятием оперируют в сопротивлении материалов).

    Общие сведения

    В физике момент силы можно понимать как «вращающая сила». В Международной системе единиц (СИ) единицей измерения момента силы является ньютон-метр (Н·м). Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. В простейшем случае, если сила приложена к рычагу перпендикулярно ему, момент силы определяется как произведение величины этой силы на расстояние до оси вращения рычага. Например, сила в 3 ньютона, приложенная к рычагу на расстоянии 2 метра от его оси вращения, создаёт такой же момент, что и сила в 1 ньютон, приложенная к рычагу на расстоянии 6 метров от оси вращения. Более точно момент силы частицы определяется как векторное произведение:

    M→=[r→×F→],{\displaystyle {\vec {M}}=\left[{\vec {r}}\times {\vec {F}}\right],}

    где F→{\displaystyle {\vec {F}}} — сила, действующая на частицу, а r→{\displaystyle {\vec {r}}} — радиус-вектор частицы (в предположении, что ось вращения проходит через начало координат).

    Предыстория

    Для того чтобы понять, откуда появилось обозначение момента сил и как к нему пришли, стоит рассмотреть действие силы на рычаг, поворачивающийся относительно неподвижной оси. Работа, совершаемая при действии силы F→{\displaystyle {\vec {F}}} на рычаг r→{\displaystyle {\vec {r}}}, совершающий вращательное движение вокруг неподвижной оси, может быть рассчитана исходя из следующих соображений.

    Пусть под действием этой силы конец рычага смещается на бесконечно малый отрезок dl{\displaystyle dl}, которому соответствует бесконечно малый угол dφ{\displaystyle d\varphi }. Обозначим через d→l{\displaystyle {\vec {d}}l} вектор, который направлен вдоль бесконечно малого отрезка dl{\displaystyle dl} и равен ему по модулю. Угол между вектором силы F→{\displaystyle {\vec {F}}} и вектором d→l{\displaystyle {\vec {d}}l} равен β{\displaystyle \beta }, а угол между векторами r→{\displaystyle {\vec {r}}} и F→{\displaystyle {\vec {F}}} — α{\displaystyle \alpha }.

    Следовательно, бесконечно малая работа dA{\displaystyle dA}, совершаемая силой F→{\displaystyle {\vec {F}}} на бесконечно малом участке dl{\displaystyle dl}, равна скалярному произведению вектора d→l{\displaystyle {\vec {d}}l} и вектора силы, то есть dA=F→⋅d→l{\displaystyle dA={\vec {F}}\cdot {\vec {d}}l}.

    Теперь попытаемся выразить модуль вектора d→l{\displaystyle {\vec {d}}l} через радиус-вектор r→{\displaystyle {\vec {r}}}, а проекцию вектора силы F→{\displaystyle {\vec {F}}} на вектор d→l{\displaystyle {\vec {d}}l} — через угол α{\displaystyle \alpha }.

    Так как для бесконечно малого перемещения рычага dl{\displaystyle dl} можно считать, что траектория перемещения перпендикулярна рычагу r→{\displaystyle {\vec {r}}}, используя соотношения для прямоугольного треугольника, можно записать следующее равенство: dl=rtgdφ{\displaystyle dl=r\mathrm {tg} \,d\varphi }, где в случае малого угла справедливо tgdφ=dφ{\displaystyle \mathrm {tg} \,d\varphi =d\varphi } и, следовательно, |dl→|=|r→|dφ{\displaystyle \left|{\vec {dl}}\right|=\left|{\vec {r}}\right|d\varphi }.

    Для проекции вектора силы F→{\displaystyle {\vec {F}}} на вектор d→l{\displaystyle {\vec {d}}l} видно, что угол β=π2−α{\displaystyle \beta ={\frac {\pi }{2}}-\alpha }, а так как cos⁡(π2−α)=sin⁡α{\displaystyle \cos {\left({\frac {\pi }{2}}-\alpha \right)}=\sin \alpha }, получаем, что |F→|cos⁡β=|F→|sin⁡α{\displaystyle \left|{\vec {F}}\right|\cos \beta =\left|{\vec {F}}\right|\sin \alpha }.

    Теперь запишем бесконечно малую работу через новые равенства: dA=|r→|dφ|F→|sin⁡α{\displaystyle dA=\left|{\vec {r}}\right|d\varphi \left|{\vec {F}}\right|\sin \alpha }, или dA=|r→||F→|sin⁡(α)dφ{\displaystyle dA=\left|{\vec {r}}\right|\left|{\vec {F}}\right|\sin(\alpha )d\varphi }.

    Теперь видно, что произведение |r→||F→|sin⁡α{\displaystyle \left|{\vec {r}}\right|\left|{\vec {F}}\right|\sin \alpha } есть не что иное, как модуль векторного произведения векторов r→{\displaystyle {\vec {r}}} и F→{\displaystyle {\vec {F}}}, то есть |r→×F→|{\displaystyle \left|{\vec {r}}\times {\vec {F}}\right|}, которое и было принято обозначить за момент силы M{\displaystyle M}, или модуль вектора момента силы |M→|{\displaystyle \left|{\vec {M}}\right|}.

    Теперь полная работа записывается просто: A=∫0φ|r→×F→|dφ{\displaystyle A=\int \limits _{0}^{\varphi }\left|{\vec {r}}\times {\vec {F}}\right|d\varphi }, или A=∫0φ|M→|dφ{\displaystyle A=\int \limits _{0}^{\varphi }\left|{\vec {M}}\right|d\varphi }.

    Единицы

    Момент силы имеет размерность «сила, умноженная на расстояние» и единицу измерения ньютон-метр в системе СИ. 1 Н·м — это момент, который производит сила 1 Н на рычаг длиной 1 м, приложенная к концу рычага и направленная перпендикулярно ему.

    Энергия и механическая работа также имеют размерность «сила, умноженная на расстояние» и измеряются в системе СИ в джоулях. Следует заметить, что энергия — это скалярная величина, тогда как момент силы — величина псевдовекторная. Совпадение размерностей этих величин не случайность: момент силы 1 Н·м, при повороте рычага или вала на 1 радиан совершает работу в 1 Дж, а при повороте на один оборот совершает механическую работу и сообщает энергию 2π{\displaystyle 2\pi } джоуля. Математически:

    E=Mθ,{\displaystyle E=M\theta ,}

    где E{\displaystyle E} — энергия, M{\displaystyle M} — вращающий момент, θ{\displaystyle \theta } — угол в радианах.

    Специальные случаи

    Формула момента рычага

    Момент, действующий на рычаг

    Очень интересен особый случай, представляемый как определение момента силы в поле:

    |M→|=|M→1||F→|,{\displaystyle \left|{\vec {M}}\right|=\left|{\vec {M}}_{1}\right|\left|{\vec {F}}\right|,}

    где: |M→1|{\displaystyle \left|{\vec {M}}_{1}\right|} — момент рычага, |F→|{\displaystyle \left|{\vec {F}}\right|} — величина действующей силы.

    Недостаток такого представления в том, что оно не дает направления момента силы, а только его величину. Если сила перпендикулярна вектору r→{\displaystyle {\vec {r}}}, момент рычага будет равен расстоянию от центра до точки приложения силы и момент силы будет максимален:

    |T→|=|r→||F→|.{\displaystyle \left|{\vec {T}}\right|=\left|{\vec {r}}\right|\left|{\vec {F}}\right|.}

    Сила под углом

    Если сила F→{\displaystyle {\vec {F}}} направлена под углом θ{\displaystyle \theta } к рычагу r, то M=rFsin⁡θ{\displaystyle M=rF\sin \theta }.

    Статическое равновесие

    Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для двумерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0,ΣV=0{\displaystyle \Sigma H=0,\,\Sigma V=0} и момент силы в третьем измерении ΣM=0{\displaystyle \Sigma M=0}.

    Момент силы как функция от времени

    Момент силы — производная по времени от момента импульса,

    Видеоурок: вращающий момент
    M→=dL→dt,{\displaystyle {\vec {M}}={\frac {d{\vec {L}}}{dt}},}

    где L→{\displaystyle {\vec {L}}} — момент импульса.

    Возьмём твердое тело. Движение твёрдого тела можно представить как движение конкретной точки и вращения вокруг неё.

    Момент импульса относительно точки O твёрдого тела может быть описан через произведение момента инерции и угловой скорости относительно центра масс и линейного движения центра масс.

    Lo→=Icω→+[M(ro→−rc→),vc→].{\displaystyle {\vec {L_{o}}}=I_{c}\,{\vec {\omega }}+[M({\vec {r_{o}}}-{\vec {r_{c}}}),{\vec {v_{c}}}].}

    Будем рассматривать вращающиеся движения в системе координат Кёнига, так как описывать движение твёрдого тела в мировой системе координат гораздо сложнее.

    Продифференцируем это выражение по времени. И если I{\displaystyle I} — постоянная величина во времени, то

    M→=Idω→dt=Iα→,{\displaystyle {\vec {M}}=I{\frac {d{\vec {\omega }}}{dt}}=I{\vec {\alpha }},}

    где α→{\displaystyle {\vec {\alpha }}} — угловое ускорение, измеряемое в радианах в секунду за секунду (рад/с2). Пример: вращается однородный диск.

    Если тензор инерции меняется со временем, то движение относительно центра масс описывается с помощью динамического уравнения Эйлера:

    Mc→=Icdω→dt+[w→,Icw→].{\displaystyle {\vec {M_{c}}}=I_{c}{\frac {d{\vec {\omega }}}{dt}}+[{\vec {w}},I_{c}{\vec {w}}].}

    Отношение между моментом силы и мощностью

    Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работу. Так же и момент силы, если совершает действие через угловое расстояние, он совершает работу.

    P=M→⋅ω→.{\displaystyle P={\vec {M}}\cdot {\vec {\omega }}.}

    В системе СИ мощность P{\displaystyle P} измеряется в ваттах, момент силы — в ньютоно-метрах, а угловая скорость — в радианах в секунду.

    Отношение между моментом силы и работой

    A=∫θ1θ2|M→|dθ.{\displaystyle A=\int _{\theta _{1}}^{\theta _{2}}\left|{\vec {M}}\right|\mathrm {d} \theta .}

    В случае постоянного момента получаем:

    A=|M→|θ.{\displaystyle A=\left|{\vec {M}}\right|\theta .}

    В системе СИ работа A{\displaystyle A} измеряется в джоулях, момент силы — в ньютоно-метрах, а угол — в радианах.

    Обычно известна угловая скорость ω{\displaystyle \omega } в радианах в секунду и время действия момента t{\displaystyle t}.

    Тогда совершённая моментом силы работа рассчитывается как:

    A=|M→|ωt.{\displaystyle A=\left|{\vec {M}}\right|\omega t.}

    Момент силы относительно точки

    Если имеется материальная точка OF{\displaystyle O_{F}}, к которой приложена сила F→{\displaystyle {\vec {F}}}, то момент силы относительно точки O{\displaystyle O} равен векторному произведению радиус-вектора r→{\displaystyle {\vec {r}}}, соединяющего точки O{\displaystyle O} и OF{\displaystyle O_{F}}, на вектор силы F→{\displaystyle {\vec {F}}}:

    MO→=[r→×F→].{\displaystyle {\vec {M_{O}}}=\left[{\vec {r}}\times {\vec {F}}\right].}

    Момент силы относительно оси

    Момент силы относительно оси равен алгебраическому значению проекции момента этой силы на плоскость, перпендикулярную этой оси относительно точки пересечения оси с плоскостью, то есть

    Mz(F)=Mo(F′)=F′h′.{\displaystyle M_{z}(F)=M_{o}(F')=F'h'.}

    Измерение момента силы

    Измерение момента силы осуществляется с помощью специальных приборов — торсиометров. Принцип их действия обычно основан на измерении угла закручивания упругого вала, передающего крутящий момент, либо на измерении деформации некоторого упругого рычага. Измерения деформации и угла закручивания производится различными датчиками деформации — тензометрическими, магнитоупругими, а также измерителями малых перемещений — оптическими, ёмкостными, индуктивными, ультразвуковыми, механическими.

    Существуют специальные динамометрические ключи для измерения крутящего момента затягивания резьбовых соединений и регулируемые и нерегулируемые ограничители крутящего момента, так называемые «трещотки», применяемые в гаечных ключах, шуруповёртах, винтовых микрометрах и др.

    См. также

    wikiredia.ru

    Пока нет комментариев.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    СайдбарКомментарии (0)